956 resultados para Governmental investigations.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

PbZr1-xTixO3 ceramics synthesised by low temperature calcination followed by sintering at 1280 degrees C show a Morphotropic Phase Boundary (MPB) for compositions of x=0.44-0.51. The morphotropic phase boundary is wider for samples with smaller grain sizes due to the synthesis route. A Rietveld analysis is performed on a composition of x=0.5 composition to quantify the phase fractions of the tetragonal and monoclinic phases present in the PZT system. Temperature dependent X-ray diffraction and dielectric studies of PbZr0.5Ti0.5O3 composition demonstrated a phase transformation from monoclinic to tetragonal at 270 degrees C followed by a ferroelectric tetragonal to a paraelectric cubic transition at 370 degrees C. Thus, the poling of these ceramics should be performed below 270 degrees C to benefit from the presence of a monoclinic phase. (C) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deformation dynamics of metal foils (<0.25 mm thick) subjected to micro-blast wave are presented in this paper. The energy of micro-blast wave emanating from the open end of a polymer tube is used to deliver micro-particles for bio-medical applications. In these experiments metal foils are used to transfer the energy of the micro-blast wave to the micro-particles. Using cubic root scaling law the over pressure of the blast wave at the open end of the polymer tube is estimated and using this peak plate over pressure is estimated. The finite element analysis is used to estimate the velocity profile of the deforming metal foils. The finite element analysis results are compared with experimental results for the maximum deformation and deformed shape. Based on the deformation velocity, metal foil to be used for experiments is selected. Among the materials investigated 0.1 mm thick brass foil has the maximum velocity of 205 m/s and is used in the experiments. It is found from finite element analysis that the particles deposited within a radius of 0.5 mm will leave the foil with nearly equal velocity (error < 5%). The spray cone angle which is the angle of deviation of the path of particles from the axis of the polymer tube is also estimated and found to be less than 7 degrees up to a radius of 0.75 mm. Illustrative experiments are carried out to deliver micro particles (0.7 mu m diameter tungsten) into plant tissues. Particle penetration depth up to 460 mu m was achieved in ground tissue of potato tuber. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of the Arpropargyl alcohol (ArPA) complex is determined from the rotational spectra of the parent complex and its two deuterated isotopologues, namely ArPA-D(OD) and ArPA-D(CD). The spectra confirm a geometry in which PA exists in the gauche form with Ar located in between OH and CCH groups. All a, b and c types of transitions show small splitting due to some large-amplitude motion dominated by COH torsion, as in the monomer. Splittings in a- and b-type transitions are of the order of a few kilohertz, whereas splitting in the c-type transitions is relatively larger (0.92.6 MHz) and decreases in the order ArPA>ArPA-D(CD)>ArPA-D(OD). The assignments are well supported by ab initio calculations. Atoms in molecules (AIM) and electrostatic potential calculations are used to explore the nature of the interactions in this complex. AIM calculations not only reveal the expected OHAr and Ar interactions in the Argauche-PA complex, but also novel CAr (of CH2OH group) and OHAr interactions in the Artrans-PA complex. Similar interactions are also present in the Armethanol complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comprehensive study of D-Na center dot center dot center dot A (D = H/F) complexes has been done using advanced ab initio and atoms in molecule (AIM) theoretical analyses. The correlation between electron density at bond critical point and binding energy gives a distinguishing feature for hydrogen bonding, different from the `electrostatic complexes' formed by LiD and NaD. Moreover, the LiD/NaD dimers have both linear and anti-parallel minima, as expected for electrostatic dipole-dipole interactions. The HF dimer has a quasi-linear minimum and the anti-parallel structure is a saddle point. Clearly, characterizing hydrogen bonding as `nothing but electrostatic interaction between two dipoles' is grossly in error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impact of high enthalpy shock wave on graphitic carbon nanoparticle (GCNP) films has been investigated and discussed in view of space and chemical engineering applications. The GCNP films were developed by using spray method and exposed to high enthalpy shock wave under an inert atmosphere. Upon shock wave treatment, two typical amendments such as weight loss in the deposited material and growth of second order nanostructures (SONS) have been observed. While increasing test gas pressure, the loss of material and density of SONs are gradually increased. Most of the shock wave induced SONS are highly crystalline and belong to the cubic diamond structure. Upon shock treatment as well as with increase of test gas pressure, a considerable improvement in the quality of GCNP films has been observed. Further, ablation of GCNPs exclusively on the top surface of the coatings and formation of hierarchical NPs (diamond NPs on GCNPs) has been observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In peptide and protein structures, occurrence of (phi,psi.) angles in the disallowed region of the Ramachandran map almost always suggests local regions of error or poor accuracy. However, very rarely genuine disallowed conformations occur as noted in the current study in proteins of known structure available at ultra-high resolution (<= 1.2 (A) over circle). In the current work, extent of conservation of genuine disallowed conformations in homologous proteins of known structures has been analyzed. From a dataset of 124 protein domain families, with structure of at least one constituent member in each family available at a resolution of 1.2 (A) over circle or better, we have analyzed the conservation of 221 disallowed conformations. It is observed that the disallowed conformation is only moderately conservedin protein domain families. In the gross dataset no particular residue type adopting disallowed conformation elicit high conservation of residue type though there are alignment positions in the dataset with complete conservation of both the residue type and the disallowed conformation. Conserved disallowed conformation in protein domain families play biologically significant role in roughly 50% of the cases. The residues with the disallowed conformation or its flanking residues are often located within or around the functional site of the protein. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study set out to investigate the compositional inconsistency in lanthanum zirconate system revealed the presence of nonstoichiometry in lanthanum zirconate powders when synthesized by coprecipitation route. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) investigations confirmed the depletion of La3+ ions in the system. Analysis using Vegard's law showed the La/Zr mole ratio in the sample to be around 0.45. An extra step of ultrasonication, introduced during the washing stage followed by the coprecipitation reaction, ensured the formation of stoichiometric La2Zr2O7. Noteworthy is also the difference between crystal sizes in the samples prepared by with and without ultrasonication step. This difference has been explained in light of the formation of individual nuclei and their scope of growth within the precipitate core. The differential scanning calorimetry (DSC) analyses revealed that optimum pH for the synthesis of La2Zr2O7 is about 11. The ultrasonication step was pivotal in assuring consistency in mixing and composition for the lanthanum zirconate powders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrostatic discharge (ESD) investigations on the multiwalled carbon nanotubes (MWCNTs) are performed for the first time. A novel ESD failure mechanism of subsequent shell burning has been discovered. By using nanosecond pulse measurements, a new insight into metal-to-carbon nanotube (CNT) contact behavior could be achieved. Clear signature of two very different conduction mechanisms and related failure types at high current injection has been found. By determining the time to failure, an Arrhenius-like relation was extracted, which was explained by the oxidation of CNT shells. Finally, an extraordinary ESD failure current density of MWCNT of 1.2 x 10(9) A/cm(2) could be shown.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The sensitivity of combustion phasing and combustion descriptors to ignition timing, load and mixture quality on fuelling a multi-cylinder natural gas engine with bio-derived H-2 and CO rich syngas is addressed. While the descriptors for conventional fuels are well established and are in use for closed loop engine control, presence of H-2 in syngas potentially alters the mixture properties and hence combustion phasing, necessitating the current study. The ability of the descriptors to predict abnormal combustion, hitherto missing in the literature, is also addressed. Results from experiments using multi-cylinder engines and numerical studies using zero dimensional Wiebe function based simulation models are reported. For syngas with 20% H-2 and CO and 2% CH4 (producer gas), an ignition retard of 5 +/- 1 degrees was required compared to natural gas ignition timing to achieve peak load of 72.8 kWe. It is found that, for syngas, whose flammability limits are 0.42-1.93, the optimal engine operation was at an equivalence ratio of 1.12. The same methodology is extended to a two cylinder engine towards addressing the influence of syngas composition, especially H-2 fraction (varying from 13% to 37%), on the combustion phasing. The study confirms the utility of pressure trace derived combustion descriptors, except for the pressure trace first derivative, in describing the MBT operating condition of the engine when fuelled with an alternative fuel. Both experiments and analysis suggest most of the combustion descriptors to be independent of the engine load and mixture quality. A near linear relationship with ignition angle is observed. The general trend(s) of the combustion descriptors for syngas fuelled operation are similar to those of conventional fuels; the differences in sensitivity of the descriptors for syngas fuelled engine operation requires re-calibration of control logic for MBT conditions. Copyright (C) 2014, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Systematic experiments have been carried out by monitoring the in-situ pressure and thickness profiles for three different configurations, viz., flat plate, flat plate with a central circular hole, and an L-section using vacuum assisted resin transfer molding (VARTM) process. The effect of anisotropy on resin flow has been quantified by considering uni-directional carbon fiber preforms with 0 degrees and 90 degrees orientation to the flow direction for each configuration. A quasi-isotropic 45 degrees/0 degrees/-45 degrees/90 degrees](S) layup has also been included for flat plate case. Additionally, the study has been extended to understand the effect of using high permeability medium for each configuration. Fluid pressure profiles and thickness variation profiles have been obtained using an array of pressure sensors and linear variable differential transformers for each configuration. Experimental data reveal that anisotropy (due to changing fiber orientations), configuration, and gravity significantly change fluid pressure and displacement fields obtained during VARTM.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temperature-dependent Raman and dielectric measurements have been carried out on (C2H5NH3)(2)CdCl4 single crystals. Raman studies reveal the presence of two structural phase transitions below room temperature at 216 K and 114 K. The phase transitions are marked by anomalies in temperature dependence of wave-number and full width half maximum (FWHM) of several vibrational modes. The transitions are also accompanied by anomalies in dielectric measurements. Raman and dielectric data indicate that the transition at 216 K is order-disorder in nature and is driven by re-orientation of organic ions, while the transition at 114 K is due to coupling between the CdCl6 octahedron and the organic chain. Further high temperature dielectric measurements reveal the presence of one more structural phase transition around 473 K across which dispersion in dielectric parameters is observed. The activation energies and relaxation time obtained for high temperature dielectric phases are characteristic of combined reorientation motions of alkyl ammonium cations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PWM waveforms with positive voltage transition at the positive zero crossing of the fundamental voltage (type-A) are generally considered for PWM waveform with even number of switching angles per quarter whereas, waveforms with negative voltage transition at the positive zero crossing (type-B) are considered for odd number of switching angles per quarter. Optimal PWM, for minimization of total harmonic distortion of line to line (VWTHD), is generally solved with the aforementioned criteria. This paper establishes that a combination of both types of waveforms gives better performance than any individual type in terms of minimum VWTHD for complete range of modulation index (M). Optimal PWM for minimum VWTHD is solved for PWM waveforms with pulse numbers (P) of 5 and 7. Both type-A and type-B waveforms are found to be better in different ranges of M. The theoretical findings are confirmed through simulation and experimental results on a 3.7 kW squirrel cage induction motor in an open-loop V/f drive. Further, the optimal PWM is analysed from a space vector point of view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Single crystals of Guanidinium L-Ascorbate (GuLA) were grown and crystal structure was determined by direct methods. GuLA crystallizes in orthorhombic, non-centrosymmetric space group P2(1)2(1)2(1). The UV-cutoff was determined as 325 nm. The morphology was generated and the interplanar angles estimated and compared with experimental values. Second harmonic generation conversion efficiency was measured and compared with other salts of L-Ascorbic acid. Surface laser damage threshold was calculated as 11.3GW/cm(2) for a single shot of laser of 1064 nm wavelength.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dilute magnetic semiconducting Zn1-xCrxS (x = 0.00, 0.01, 0.03, 0.05, 0.07) nanoparticles were synthesized by the co-precipitation technique using thioglycerol as the capping agent. Powder X-ray diffraction studies showed that Zn1-xCrxS nanoparticles exhibit zinc blende structure with no secondary phase, indicating that Cr ions are substituted at the Zn sites. Photoluminescence and Raman studies show the incorporation of Cr in ZnS nanoparticles. X-ray absorption studies depict that the valence of Zn remains unchanged and maintained in the divalent state, upon doping with Cr. The M-H curves at room temperature indicate the presence of weak ferromagnetism at room temperature due to structural defects. The increase in ferromagnetism with increasing Cr content up to 3%, demonstrates the possibility of tailoring the weak ferromagnetism in ZnS by appropriate Cr doping. (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Unreinforced masonry (URM) structures that are in need of repair and rehabilitation constitute a significant portion of building stock worldwide. The successful application of fiber-reinforced polymers (FRP) for repair and retrofitting of reinforced-concrete (RC) structures has opened new avenues for strengthening URM structures with FRP materials. The present study analyzes the behavior of FRP-confined masonry prisms under monotonic axial compression. Masonry comprising of burnt clay bricks and cement-sand mortar (generally adopted in the Indian subcontinent) having E-b/E-m ratio less than one is employed in the study. The parameters considered in the study are, (1) masonry bonding pattern, (2) inclination of loading axis to the bed joint, (3) type of FRP (carbon FRP or glass FRP), and (4) grade of FRP fabric. The performance of FRP-confined masonry prisms is compared with unconfined masonry prisms in terms of compressive strength, modulus of elasticity and stress-strain response. The results showed an enhancement in compressive strength, modulus of elasticity, strain at peak stress, and ultimate strain for FRP-confined masonry prisms. The FRP confinement of masonry resulted in reducing the influence of the inclination of the loading axis to the bed joint on the compressive strength and failure pattern. Various analytical models available in the literature for the prediction of compressive strength of FRP-confined masonry are assessed. New coefficients are generated for the analytical model by appending experimental results of the current study with data available in the literature. (C) 2014 American Society of Civil Engineers.