873 resultados para Glutathione - S
Resumo:
Purpose. To assess the relationship between macular pigment optical density (MPOD) and blood markers for antioxidant defense in otherwise healthy volunteers. Methods. Forty-seven healthy volunteers were subjected to blood analysis to detect the level of circulating glutathione in its reduced (GSH) and oxidized (GSSG) forms. The level of MPOD was measured using heterochromatic flicker photometry. Systemic blood pressure (BP) parameters, heart rate (HR), body mass index (BMI), and plasma levels of total, HDL, and LDL cholesterol and triglycerides (TGs) were also determined. Results. A simple correlation model revealed that the level of MPOD correlated significantly and positively with both GSH (P < 0.001) and t-GSH (P < 0.001) levels but not with those of GSSG (P > 0.05). Age, sex, systemic BP parameters, HR, BMI, and plasma levels of cholesterol and TGs did not have any influence on either MPOD or glutathione levels (all P > 0.05). In addition, a forward stepwise multiple regression analysis showed MPOD to have a significantly and independent correlation with GSH levels (ß = 0.63; P < 0.001). Conclusions. In otherwise healthy older individuals, there is a positive correlation between local and systemic antioxidant defense mechanisms.
Resumo:
A series of antioxidants was used to explore the cytotoxicity of one particularly toxic antimycobacterial 2-pyridylcarboxamidrazone anti-tuberculosis agent against human mononuclear leucocytes (MNL), in comparison with isoniazid (INH) to aid future compound design. INH caused a significant reduction of nearly 40% in cell recovery compared with control (P < 0.0001), although the co-incubation with either glutathione (GSH, 1 mM) or (NAC, 1 mM) showed abolition of INH toxicity. In contrast, the addition of GSH or NAC 1 h after INH failed to protect the cells from INH toxicity (P < 0.0001). The 2-pyridyl-carboxamidrazone 'Compound 1' caused a 50% reduction in cell recovery compared with control (P < 0.001), although this was abolished by the presence of either GSH or NAC. A 1 h post incubation with either NAC or GSH after Compound 1 addition failed to protect the cells from toxicity (P < 0.001). Co-administration of lipoic acid (LA) abolished Compound 1-mediated toxicity, although again, this effect did not occur after LA addition 1 h post incubation with Compound 1 (P < 0.001). However, co-administration of dihydrolipoic acid (DHLA) prevented Compound 1-mediated cell death when incubated with the compound and also after 1 h of Compound 1 alone. Pre-treatment with GSH, then removal of the antioxidant resulted in abolition of Compound 1 toxicity (vehicle control, 63.6 ± 16.7 versus Compound 1 alone 26.1 ± 13.6% versus GSH pre-treatment, 65.7 ± 7.3%). In a cell-free incubation, NMR analysis revealed that GSH does not react with Compound 1, indicating that this agent is not likely to directly deplete membrane thiols. Compound 1's MNL toxicity is more likely to be linked with changes in cell membrane conformation, which may induce consequent thiol depletion that is reversible by exogenous thiols. © 2004 Elsevier B.V. All rights reserved.
Protein-mediated isolation of plasmid DNA by a zinc finger-glutathione S-transferase affinity linker
Resumo:
The sequence-specific affinity chromatographic isolation of plasmid DNA from crude lysates of E. coli DH5α fermentations is addressed. A zinc finger-GST fusion protein that binds a synthetic oligonucleotide cassette containing the appropriate DNA recognition sequence is described. This cassette was inserted into the Smal site of pUC19 to enable the affinity isolation of the plasmid. It is shown that zinc finger-GST fusion proteins can bind both their DNA recognition sequence and a glutathione-derivatized solid support simultaneously. Furthermore, a simple procedure for the isolation of such plasmids from clarified cell lysates is demonstrated. Cell lysates were clarified by cross-flow Dean vortex microfiltration, and the permeate was incubated with zinc finger-GST fusion protein. The resulting complex was adsorbed directly onto glutathione-Sepharose. Analysis of the glutathione-eluted complex showed that plasmid DNA had been recovered, largely free from contamination by genomic DNA or bacterial cell proteins. © 2002 Wiley Periodicals, Inc.
Resumo:
PURPOSE. To investigate in parallel the systemic glutathione levels of patients suffering from primary open angle glaucoma (POAG) or normal tension glaucoma (NTG) with comparable functional loss. METHODS. Thirty-four POAG patients, 30 NTG patients, and 53 controls were subjected to blood analysis to detect the level of circulating glutathione in its reduced (GSH) and oxidized (GSSG) forms. Systemic blood pressure (BP) and ocular perfusion pressure (OPP) parameters were also determined. RESULTS. Independent of age, POAG and NTG patients demonstrated significantly lower GSH and t-GSH levels than age-matched controls (P < 0.001). Additionally, a lower redox index was found, but in POAG patients only, in comparison to both NTG and control groups (P = 0.020). GSSG levels were, however, similar between all study groups (P > 0.05). CONCLUSIONS. This study demonstrates, for the first time, that both POAG and NTG patients exhibit lower GSH and t-GSH levels than age-matched controls, indicating a similar general compromise of the antioxidant defense systems may exist in both conditions. © 2013 The Association for Research in Vision and Ophthalmology, Inc.
Resumo:
Background: During ageing an altered redox balance has been observed in both intracellular and extracellular compartments, primarily due to glutathione depletion and metabolic stress. Maintaining redox homeostasis is important for controlling proliferation and apoptosis in response to specific stimuli for a variety of cells. For T cells, the ability to generate specific response to antigen is dependent on the oxidation state of cell surface and cytoplasmic protein-thiols. Intracellular thiols are maintained in their reduced state by a network of redox regulating peptides, proteins and enzymes such as glutathione, thioredoxins and thioredoxin reductase. Here we have investigated whether any relationship exists between age and secreted or cell surface thioredoxin-1, intracellular glutathione concentration and T cell surface thioredoxin 1 (Trx-1) and how this is related to interleukin (IL)-2 production.Results: Healthy older adults have reduced lymphocyte surface expression and lower circulating plasma Trx-1 concentrations. Using buthionine sulfoximine to deplete intracellular glutathione in Jurkat T cells we show that cell surface Trx-1 is lowered, secretion of Trx-1 is decreased and the response to the lectin phytohaemagglutinin measured as IL-2 production is also affected. These effects are recapitulated by another glutathione depleting agent, diethylmaleate.Conclusion: Together these data suggest that a relationship exists between the intracellular redox compartment and Trx-1 proteins. Loss of lymphocyte surface Trx-1 may be a useful biomarker of healthy ageing. © 2013 Carilho Torrao et al.; licensee Chemistry Central Ltd.
Resumo:
The production of high levels of reactive oxygen species by neutrophils is associated with the local and systemic destructive phenotype found in the chronic inflammatory disease periodontitis. In the present study, we investigated the ability of sulforaphane (SFN) to restore cellular glutathione levels and reduce the hyperactivity of circulating neutrophils associated with chronic periodontitis. Using differentiated HL60 cells as a neutrophil model, here we show that generation of extracellular O2 . - by the nicotinamide adenine dinucleotide (NADPH) oxidase complex is increased by intracellular glutathione depletion. This may be attributed to the upregulation of thiol regulated acid sphingomyelinase driven lipid raft formation. Intracellular glutathione was also lower in primary neutrophils from periodontitis patients and, consistent with our previous findings, patients neutrophils were hyper-reactive to stimuli. The activity of nuclear factor erythroid-2-related factor 2 (Nrf2), a master regulator of the antioxidant response, is impaired in circulating neutrophils from chronic periodontitis patients. Although patients' neutrophils exhibit a low reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio and a higher total Nrf2 level, the DNA-binding activity of nuclear Nrf2 remained unchanged relative to healthy controls and had reduced expression of glutamate cysteine ligase catalytic (GCLC), and modifier (GCLM) subunit mRNAs, compared to periodontally healthy subjects neutrophils. Pre-treatment with SFN increased expression of GCLC and GCM, improved intracellular GSH/GSSG ratios and reduced agonist-activated extracellular O2 . - production in both dHL60 and primary neutrophils from patients with periodontitis and controls. These findings suggest that a deficiency in Nrf2-dependent pathways may underpin susceptibility to hyper-reactivity in circulating primary neutrophils during chronic periodontitis. © 2013 Dias et al.
Resumo:
Background: This pilot study aimed to investigate systemic and retinal vascular function and their relationship to circulatory markers of cardiovascular risk in early age-related macular degeneration (AMD) patients without any already diagnosed systemic vascular pathologies. Methods: Fourteen patients diagnosed with early AMD and 14 age- and gender-matched healthy controls underwent blood pressure, carotid intima-media thickness (C-IMT) and peripheral arterial stiffness measurements. Retinal vascular reactivity was assessed by means of dynamic retinal vessel analysis (DVA) using a modified protocol. Blood analyses were conducted for glutathione levels and plasma levels of total cholesterol (CHOL), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglycerides (TG). Results: The AMD patients showed significantly greater C-IMT (p = 0.029) and augmentation index (AIx) (p = 0.042) than the age-matched controls. In addition, they demonstrated a shallower retinal arterial dilation slope (Slope AD) (p = 0.005) and a longer retinal venous reaction time (RT) to flickering light (p = 0.026). Blood analyses also revealed that AMD patients exhibited higher oxidized glutathione (GSSG) (p = 0.024), lower redox index (p = 0.043) and higher LDL-C (p = 0.033) levels than the controls. Venous RT parameter correlated positively with blood GSSG levels (r = 0.58, p = 0.038) in AMD subjects, but not in the controls (p > 0.05). Conclusions: Patients diagnosed with early AMD exhibit signs of systemic and retinal vascular alterations that correlated with known risk markers for future cardiovascular morbidity. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Resistance to pentavallent antimonial (Sb-v) agents such as sodium stibogluconate (SSG) is creating a major problem in the treatment of visceral leishmaniasis. In the present study the in vivo susceptibilities of Leishmania donovani strains, typed as SSG resistant (strain 200011) or SSG sensitive (strain 200016) on the basis of their responses to a single SSG dose of 300 mg of Sb-v/kg of body weight, to other antileishmanial drugs were determined. In addition, the role of glutathione in SSG resistance was investigated by determining the influence on SSG treatment of concomitant treatment with a nonionic surfactant vesicle formulation of buthionine sulfoximine (BSO), a specific inhibitor of the enzyme gamma-glutamylcysteine synthetase which is involved in glutathione biosynthesis, and SSG, on the efficacy of SSG treatment. L. donovani strains that were SSG resistant (strain 200011) and SSG sensitive (strain 200016) were equally susceptible to in vivo treatment with miltefosine, paromomycin and amphotericin B (Fungizone and AmBisome) formulations. Combined treatment with SSG and vesicular BSO significantly increased the in vivo efficacy of SSG against both the 200011 and the 200016 L. donovani strains. However, joint treatment that included high SSG doses was unexpectedly associated with toxicity. Measurement of glutathione levels in the spleens and livers of treated mice showed that the ability of the combined therapy to inhibit glutathione levels was also dependent on the SSG dose used and that the combined treatment exhibited organ-dependent effects. The SSG resistance exhibited by the L. donovani strains was not associated with cross-resistance to other classes of compounds and could be reversed by treatment with an inhibitor of glutathione biosynthesis, indicating that clinical resistance to antimonial drugs should not affect the antileishmanial efficacies of alternative drugs. In addition, it should be possible to identify a treatment regimen that could reverse antimony resistance.
Resumo:
The aim of this study was to investigate the mechanism of action of the preservative sodium chlorite (NaClO2), and the relationship with intracellular glutathione depletion. A detailed comparison of the dose responses of two cultured ocular epithelial cell types and four species of microorganism was carried out, and comparisons were also made with the quaternary ammonium compound benzalkonium chloride (BAK), and the oxidant hydrogen peroxide (H2O2). The viability of mammalian and microbial cells was assessed in the same way, by the measurement of intracellular ATP using a bioluminescence method. Intracellular total glutathione was measured by reaction with 5,5'-dithiobis-2-nitrobenzoic acid in a glutathione reductase-dependent recycling assay. BAK and H2O2 caused complete toxicity to conjunctival and corneal epithelial cells at similar to25 ppm, in contrast to NaClO2 , where >100 ppm was required. The fungi Candida albicans and Alternaria alternata had a higher resistance to NaClO2 than the bacteria Staphyloccus aureus and Pseudomonas aeruginosa , but the bacteria were extremely resistant to H2O2 NaClO2 caused substantial depletion of intracellular glutathione in all cell types, at concentrations ranging from <10 ppm in Pseudomonas , 25-100 ppm in epithelial cells, to >500 ppm in fungal cells. The mechanisms of cytotoxicity of NaClO2 , H2O2 and BAK all appeared to differ. NaClO2 was found to have the best balance of high antibacterial toxicity with low ocular toxicity. The lower toxicity of NaClO2 to the ocular cells, compared with BAK and H2O2 , is in agreement with fewer reported adverse effects of application in the eye.
Dimethylsulfoxide oxidizes glutathione in vitro and in human erythrocytes:kinetic analysis by 1H NMR
Resumo:
The interaction of dimethylsulfoxide (Me2SO) with glutathione was investigated under non-equilibrium conditions in solution using 1H NMR and in intact erythrocytes using 1H spin-echo NMR. In solution the reaction was observed to follow second-order kinetics (Rate = k1[glutathione][Me2SO]) at 300 K pH 7.4, ksol = 4.7 × 10-5 mol -1 L1 s-1. In intact erythrocytes the rate constant for the cellular environment, kcell, was found to be slightly larger at 8.1 × 10-5 mol-1 L1 s-1. Furthermore, the reaction of Me2SO with erythrocyte glutathione showed a biphasic dependence on the Me2SO concentration, with little oxidation of glutathione occurring until the Me2SO concentration exceeded 0.5 mol L-1. The results suggest that at lower concentrations, Me2SO can be effectively removed, most probably by reaction with glutathione, which is regenerated by glutathione reductase, although preferential reaction with other cellular components (e.g., membrane or cellular thiols) cannot be ruled out. Thus the concentrations of Me2SO that are commonly used in cryopreservation of mammalian cells (∼1.4 mol L-1) can cause oxidation of intracellular glutathione.
Resumo:
Elevated total cholesterol in midlife has been associated with increased risk of dementia in later life. We have previously shown that low-density lipoprotein (LDL) is more oxidized in the plasma of dementia patients, although total cholesterol levels are not different from those of age-matched controls. β-Amyloid (Aβ) peptide, which accumulates in Alzheimer disease (AD), arises from the initial cleavage of amyloid precursor protein by β-secretase-1 (BACE1). BACE1 activity is regulated by membrane lipids and raft formation. Given the evidence for altered lipid metabolism in AD, we have investigated a mechanism for enhanced Aβ production by SH-SY5Y neuronal-like cells exposed to oxidized LDL (oxLDL). The viability of SH-SY5Y cells exposed to 4 μg oxLDL and 25 μM 27-hydroxycholesterol (27OH-C) was decreased significantly. Lipids, but not proteins, extracted from oxLDL were more cytotoxic than oxLDL. In parallel, the ratio of reduced glutathione (GSH) to oxidized glutathione was decreased at sublethal concentrations of lipids extracted from native and oxLDL. GSH loss was associated with an increase in acid sphingomyelinase (ASMase) activity and lipid raft formation, which could be inhibited by the ASMase inhibitor desipramine. 27OH-C and total lipids from LDL and oxLDL independently increased Aβ production by SH-SY5Y cells, and Aβ accumulation could be inhibited by desipramine and by N-acetylcysteine. These data suggest a mechanism whereby oxLDL lipids and 27OH-C can drive Aβ production by GSH depletion, ASMase-driven membrane remodeling, and BACE1 activation in neuronal cells. © 2014 The Authors.
Resumo:
In this study the interaction of the preservative sodium chlorite with unsaturated lipids and glutathione was investigated, in comparison with peroxides, sodium hypochlorite, and benzalkonium chloride. The aim was to determine whether the action of sodium chlorite could involve membrane lipid damage or antioxidant depletion, and how this related to toxicity in both mammalian and microbial cells. The treatment of phospholipids with chlorite yielded low levels of hydroperoxides, but sodium chlorite oxidized the thiol-containing antioxidant glutathione to its disulfide form very readily in vitro, with a 1:4 oxidant:GSH stoichiometry. In cultured cells, sodium chlorite also caused a substantial depletion of intracellular glutathione, whereas lipid oxidation was not very prominent. Sodium chlorite had a lower toxicity to ocular mammalian cells than benzalkonium chloride, which could be responsible for the different effects of long-term application in the eye. The fungal cells, which were most resistant to sodium chlorite, maintained higher percentage levels of intracellular glutathione during treatment than the mammalian cells. The results show that sodium chlorite can cause oxidative stress in cells, and suggest that cell damage is more likely to be due to interaction with thiol compounds than with cell membrane lipids. The study also provides important information about the differential resistance of ocular cells and microbes to various preservatives and oxidants.
Resumo:
Reactive oxygen species (ROS) are increased in ischemic tissues and necessary for revascularization; however, the mechanism remains unclear. Exposure of cysteine residues to ROS in the presence of glutathione (GSH) generates GSH-protein adducts that are specifically reversed by the cytosolic thioltransferase, glutaredoxin-1 (Glrx). Here, we show that a key angiogenic transcriptional factor hypoxia-inducible factor (HIF)-1α is stabilized by GSH adducts, and the genetic deletion of Glrx improves ischemic revascularization. In mouse muscle C2C12 cells, HIF-1α protein levels are increased by increasing GSH adducts with cell-permeable oxidized GSH (GSSG-ethyl ester) or 2-acetylamino-3-[4-(2-acetylamino-2-carboxyethylsulfanyl thiocarbonylamino) phenylthiocarbamoylsulfanyl] propionic acid (2-AAPA), an inhibitor of glutathione reductase. A biotin switch assay shows that GSSG-ester-induced HIF-1α contains reversibly modified thiols, and MS confirms GSH adducts on Cys520 (mouse Cys533). In addition, an HIF-1α Cys520 serine mutant is resistant to 2-AAPA–induced HIF-1α stabilization. Furthermore, Glrx overexpression prevents HIF-1α stabilization, whereas Glrx ablation by siRNA increases HIF-1α protein and expression of downstream angiogenic genes. Blood flow recovery after femoral artery ligation is significantly improved in Glrx KO mice, associated with increased levels of GSH-protein adducts, capillary density, vascular endothelial growth factor (VEGF)-A, and HIF-1α in the ischemic muscles. Therefore, Glrx ablation stabilizes HIF-1α by increasing GSH adducts on Cys520 promoting in vivo HIF-1α stabilization, VEGF-A production, and revascularization in the ischemic muscles
Resumo:
Arsenic trioxide (ATO) has been tested in relapsed/refractory multiple myeloma with limited success. In order to better understand drug mechanism and resistance pathways in myeloma we generated an ATO-resistant cell line, 8226/S-ATOR05, with an IC50 that is 2–3-fold higher than control cell lines and significantly higher than clinically achievable concentrations. Interestingly we found two parallel pathways governing resistance to ATO in 8226/S-ATOR05, and the relevance of these pathways appears to be linked to the concentration of ATO used. We found changes in the expression of Bcl-2 family proteins Bfl-1 and Noxa as well as an increase in cellular glutathione (GSH) levels. At low, clinically achievable concentrations, resistance was primarily associated with an increase in expression of the anti-apoptotic protein Bfl-1 and a decrease in expression of the pro-apoptotic protein Noxa. However, as the concentration of ATO increased, elevated levels of intracellular GSH in 8226/S-ATOR05 became the primary mechanism of ATO resistance. Removal of arsenic selection resulted in a loss of the resistance phenotype, with cells becoming sensitive to high concentrations of ATO within 7 days following drug removal, indicating changes associated with high level resistance (elevated GSH) are dependent upon the presence of arsenic. Conversely, not until 50 days without arsenic did cells once again become sensitive to clinically relevant doses of ATO, coinciding with a decrease in the expression of Bfl-1. In addition we found cross-resistance to melphalan and doxorubicin in 8226/S-ATOR05, suggesting ATO-resistance pathways may also be involved in resistance to other chemotherapeutic agents used in the treatment of multiple myeloma.