318 resultados para Glucocorticoids
Resumo:
Arthrocentesis, injection and infiltration of joints and soft tissues belong to the basic procedures in rheumatology. The indications and the practical performance are based on experience and tradition. Nowadays, a crucial reappraisal and adaption of indications and technical aspects appear important in the light of new evidence and technical developments. The main indications for puncture remain the search of an infectious arthritis and reduction of intra-articular pressure due to effusion. Good indications for the injection of glucocorticoids are inflammation in sterile joints and activated osteoarthritis. The local infiltration with corticosteroids in mechanically induced enthesopathies at the lateral epicondyle of the humerus or at the plantar fascia have to be questioned in the light of recent publications which show that this common practice is associated with a poorer outcome than without injection.
Resumo:
Glucocorticoids (GC) are potent anti-inflammatory and immunosuppressive steroid hormones, mainly produced by the adrenal glands. However, increasing evidence supports the idea of additional extra-adrenal sources of bioactive GC. The lung epithelium is constantly exposed to a plethora of antigenic stimuli, and local GC synthesis could contribute to limit uncontrolled immune reactions and tissue damage.
Resumo:
Juvenile sterile granulomatous dermatitis and lymphadenitis is a rare immune-mediated skin disease in young dogs. History, signalment, diagnostics, treatment, and outcome in 10 dogs are described. The age ranged from 8 - 36 weeks. The lymph nodes were enlarged in all dogs, especially the mandibular and prescapular lymph nodes. Systemic signs including fever were present in 8 dogs. Seven dogs suffered from blepharitis and painful edema of the muzzle with hemorrhagic discharge, pustules and papules. Cytology of pustules and lymph node aspirates revealed a pyogranulomatous inflammation. In 7 cases the diagnosis of juvenile sterile granulomatous dermatitis and lymphadenitis was confirmed by histology. Nine dogs were treated with prednisolone (0.5 - 1.25 mg/kg BID), H2-receptor antagonists and analgetics; all dogs were treated with antibiotics. Four dogs were treated with eye ointment containing antibiotics and glucocorticoids. The prednisolone dosage was tapered over 3 - 8 weeks. One dog had a relapse.
Resumo:
The various types of glomerulonephritis, including many forms of vasculitis, are responsible for about 15% of cases of end-stage renal disease (ESRD). Arterial hypertension represents a frequent finding in patients suffering from glomerulonephritis or vasculitis and hypertension also serves as an indicator for these severe types of diseases. In addition, there are symptoms and signs like hematuria, proteinuria and renal failure. Especially, rapidly progressive glomerulonephritis (RPGN) constitutes a medical emergency and must not be missed by treating physicians. This disease can either occur limited to the kidneys or in the context of a systemic inflammatory disorder, like a vasculitis. If left untreated, RPGN can lead to a necrotizing destruction of glomeruli causing irreversible kidney damage within several months or even weeks. With respect to the immunologically caused vasculitis, there are - depending upon the severity and type of organ involved - many clinical warning signs to be recognized, such as arterial hypertension, hemoptysis, arthalgias, muscle pain, palpable purpura, hematuria, proteinuria and renal failure. In addition, constitutional signs, such as fever and loss of body weight may occur concurrently. Investigations of glomerulonephritis or vasculitis must contain a careful and complete examination of family history and medications used by the respective patient. Thereafter, a thorough clinical examination must follow, including skin, joints and measurement of arterial blood pressure. In addition, a spectrum of laboratory analyses is required in blood, such as full blood screen, erythrocyte sedimentation rate, CRP, creatinine, urea and glucose, and in urine, including urinalysis looking for hematuria, red cell casts and proteinuria. Importantly, proteinuria needs to be quantified by the utilization of a random urine sample. Proteinuria > 3g/d is diagnostic for a glomerular damage. These basic tests are usually followed by more specialized analyses, such as a screening for infections, including search for HIV, hepatitis B or C and various bacteria, and for systemic inflammatory diseases, including tests for antibodies, such as ANA, anti-dsDNA, ANCA, anti-GBM and anti-CCP. In cases of membranous nephropathy, antibodies against phospholipase-A2-receptor need to be looked for. Depending upon the given clinical circumstances and the type of disease, a reasonable tumor screening must be performed, especially in cases of membranous and minimal-change nephropathy. Finally, radiological examinations will complete the initial work-up. In most cases, at least an ultrasound of the kidney is mandatory. Thereafter, in most cases a renal biopsy is required to establish a firm diagnosis to define all treatment options and their chance of success. The elimination of a specific cause for a given glomerulonephritis or vasculitis, such as an infection, a malignancy or a drug-related side-effect, remains the key principle in the management of these diseases. ACE-inhibitors, angiotensin receptor-blockers, aldosteron antagonists and renin-inhibitors remain the mainstay in the therapy of arterial hypertension with proteinuria. Only in cases of persistently high proteinuria, ACE-inhibitors and angiotensin receptor blockers can be prescribed in combination. Certain types of glomerulonephritis and essentially all forms of vasculitis require some form of more specific anti-inflammatory therapy. Respective immunosuppressive drug regimens contain traditionally medications, such as glucocorticoids (e. g. prednisone), cyclosporine A, mycophenolate mofetil, cyclophosphamide, and azathioprine. With respect to more severe forms of glomerulonephritis and vasculitis, the antibody rituximab represents a new and less toxic alternative to cyclophosphamide. Finally, in certain special cases, like Goodpasture's syndrome or severe ANCA-positive vasculitis, a plasma exchange will be useful and even required.
Resumo:
We describe the main characteristics and treatment of urogenital manifestations in patients with Wegener granulomatosis (WG). We conducted a retrospective review of the charts of 11 patients with WG. All patients were men, and their median age at WG diagnosis was 53 years (range, 21-70 yr). Urogenital involvement was present at onset of WG in 9 cases (81%), it was the first clinical evidence of WG in 2 cases (18%), and was a symptom of WG relapse in 6 cases (54%). Symptomatic urogenital involvement included prostatitis (n = 4) (with suspicion of an abscess in 1 case), orchitis (n = 4), epididymitis (n = 1), a renal pseudotumor (n = 2), ureteral stenosis (n = 1), and penile ulceration (n = 1). Urogenital symptoms rapidly resolved after therapy with glucocorticoids and immunosuppressive agents. Several patients underwent a surgical procedure, either at the time of diagnosis (n = 3) (consisting of an open nephrectomy and radical prostatectomy for suspicion of carcinoma, suprapubic cystostomy for acute urinary retention), or during follow-up (n = 3) (consisting of ureteral double J stents for ureteral stenosis, and prostate transurethral resection because of dysuria). After a mean follow-up of 56 months, urogenital relapse occurred in 4 patients (36%). Urogenital involvement can be the first clinical evidence of WG. Some presentations, such as a renal or prostate mass that mimics cancer or an abscess, should be assessed to avoid unnecessary radical surgery. Urogenital symptoms can be promptly resolved with glucocorticoids and immunosuppressive agents. However, surgical procedures, such as prostatic transurethral resection, may be mandatory in patients with persistent symptoms.
Resumo:
Synthetic glucocorticoids (GC) are used as a clinical therapeutic to stimulate lung development in fetuses that present the risk of preterm delivery. Previous studies have shown that a prenatal exposure to Dexamethasone (DEX) causes a disturbance in normal GC mediation of neuritic outgrowth, cell signaling, and serotonergic systems. Our hypothesis is that a prenatal exposure to DEX during the third trimester of pregnancy alters 5HT1A receptor function. Pregnant dams were injected daily with 150μg/ml/kg of DEX from gestation day 14 through 19. Control dams were treated with and equal volume of saline. Swim stress followed by elevated plus maze testing was conducted on male rats an hour and a half prior to being sacrificed to induce postnatal acute stress. The non-stressed group was also tested and allowed to return to baseline before sacrifice. Hippocampi were analyzed using a radioligand-receptor binding assay and GTPγS35 incorporation (3H-MPPF antagonist and 8-OH-DPAT agonist, respectively). A significant increase in Kd was found in non-stressed DEX-exposed animals compared to non-stressed controls (p
Resumo:
Dexamethasone is routinely administered to women at risk for a preterm birth in order to enhance fetal lung development and reduce uterine contractions. Research has demonstrated possible behavioral abnormalities in adulthood as a result of dexamethasone treatment. Using nonlinear mixed effects modeling, this study found thatprenatal dexamethasone treatment impaired spatial learning and memory of adult male Sprague-Dawley rats. Prenatal dexamethasone treatment also led to more anxiety related behaviors on Elevated Plus Maze testing 1.5 hours after a stress challenge. Because theassumptions underlying the independent samples t-test were violated, the randomization test was used to compare groups on the Elevated Plus Maze.
Resumo:
Besides the kidneys, the gastrointestinal tract is the principal organ responsible for sodium homeostasis. For sodium transport across the cell membranes the epithelial sodium channel (ENaC) is of pivotal relevance. The ENaC is mainly regulated by mineralocorticoid receptor mediated actions. The MR activation by endogenous 11β-hydroxy-glucocorticoids is modulated by the 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2). Here we present evidence for intestinal segment specific 11β-HSD2 expression and hypothesize that a high salt intake and/or uninephrectomy (UNX) affects colonic 11β-HSD2, MR and ENaC expression. The 11β-HSD2 activity was measured by means of 3H-corticosterone conversion into 3H-11-dehydrocorticosterone in Sprague Dawley rats on a normal and high salt diet. The activity increased steadily from the ileum to the distal colon by a factor of about 3, an observation in line with the relevance of the distal colon for sodium handling. High salt intake diminished mRNA and protein of 11β-HSD2 by about 50% (p<0.001) and reduced the expression of the MR (p<0.01). The functionally relevant ENaC-β and ENaC-γ expression, a measure of mineralocorticoid action, diminished by more than 50% by high salt intake (p<0.001). The observed changes were present in rats with and without UNX. Thus, colonic epithelial cells appear to contribute to the protective armamentarium of the mammalian body against salt overload, a mechanism not modulated by UNX.
Resumo:
Renal allograft donors are at risk of developing hypertension. Here, we hypothesized that this risk is at least in part explained by an enhanced intracellular availability of 11β-hydroxyglucocorticoids due to an increased 11β-hydroxysteroid dehydrogenase type 1 enzyme (11β-HSD1), an intracellular prereceptor activator of biologically inactive 11-ketocorticosteroids in the liver, and/or a diminished 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2), an inactivator of 11β-hydroxyglucocorticoids in the kidney. To test this hypothesis, uninephrectomized (UNX) (n=9) and sham-operated (n=10) adult Sprague-Dawley rats were investigated. Mean arterial blood pressure and heart rate were measured continuously by telemetry for 6 days in week 5 after UNX. The mRNA of 11β-Hsd1 and 11β-Hsd2 in liver and kidney tissues were assessed by RT-PCR and the 11β-HSD activities were directly quantified in their corresponding tissues by determining the ratios of (tetrahydrocorticosterone+5α-tetrahydrocorticosterone)/tetrahydrodehydrocorticosterone ((THB+5α-THB)/THA) and of corticosterone/dehydrocorticosterone (B/A) by gas chromatography-mass spectrometry. The apparent total body activities of 11β-HSD1 and 11β-HSD2 were estimated using the urinary and plasma ratios of (THB+5α-THB)/THA and B/A. Mean arterial blood pressure was increased after UNX when compared with sham operation. Hepatic mRNA content of 11β-Hsd1 and hepatic, plasma, and urinary ratios of (THB+5α-THB)/THA were decreased after UNX, indicating diminished access of glucocorticoids to its receptors. In renal tissue, 11β-Hsd2 mRNA was reduced and B/A ratios measured in kidney, plasma, and urine were increased, indicating reduced 11β-HSD2 activity and enhanced access of glucocorticoids to mineralocorticoid receptors. Both 11β-HSD1 and 11β-HSD2 are downregulated after UNX in rats, a constellation considered to induce hypertension.
Resumo:
OBJECTIVE: While systemic glucocorticoids compromise bone metabolism, altered intracellular cortisol availability may also contribute to the pathogenesis of primary male osteoporosis (MO). The objective of this study was to assess whether intracellular cortisol availability is increased in MO due to a distorted local cortisol metabolism. METHODS: Forty-one patients with MO were compared with age- and BMI-matched non-osteoporotic subjects after excluding overt systemic hypercortisolism (N = 41). Cortisol, cortisone and the respective tetrahydro-, 5α-tetrahydro- and total cortisol metabolites were analysed by GC-MS in 24 h urine. Apparent 11β-hydroxysteroid dehydrogenase (11β-HSD) enzyme activities, excretion of cortisol metabolites and calcium, and fractional urinary calcium excretion were assessed and related to BMD. RESULTS: Fractional and total urinary calcium excretion negatively correlated with BMD at all (P < 0.05) and at three of five (P < 0.05) measurement sites, respectively. While systemic cortisol was unchanged, apparent 11β-HSD enzyme activity in MO patients (P < 0.01) suggested increased intracellular cortisol availability. Total and fractional urinary calcium excretion was higher, with apparent 11β-HSD enzyme activities consistent with an enhanced intracellular cortisol availability (P < 0.05). CONCLUSION: Apparent 11β-HSD enzyme activities consistent with increased intracellular cortisol availability correlated with urinary calcium loss and reduced bone mineral density in MO. The changes in 11β-HSD activity were associated with both the fractional calcium excretion, suggesting altered renal calcium handling, and the absolute urinary calcium excretion. Both mechanisms could result in a marked bone calcium deficiency if insufficiently compensated for by intestinal calcium uptake.
Resumo:
The majority of mutations that cause isolated GH deficiency type II (IGHD II) affect splicing of GH-1 transcripts and produce a dominant-negative GH isoform lacking exon 3 resulting in a 17.5-kDa isoform, which further leads to disruption of the GH secretory pathway. A clinical variability in the severity of the IGHD II phenotype depending on the GH-1 gene alteration has been reported, and in vitro and transgenic animal data suggest that the onset and severity of the phenotype relates to the proportion of 17.5-kDa produced. The removal of GH in IGHD creates a positive feedback loop driving more GH expression, which may itself increase 17.5-kDa isoform productions from alternate splice sites in the mutated GH-1 allele. In this study, we aimed to test this idea by comparing the impact of stimulated expression by glucocorticoids on the production of different GH isoforms from wild-type (wt) and mutant GH-1 genes, relying on the glucocorticoid regulatory element within intron 1 in the GH-1 gene. AtT-20 cells were transfected with wt-GH or mutated GH-1 variants (5'IVS-3 + 2-bp T->C; 5'IVS-3 + 6 bp T->C; ISEm1: IVS-3 + 28 G->A) known to cause clinical IGHD II of varying severity. Cells were stimulated with 1 and 10 mum dexamethasone (DEX) for 24 h, after which the relative amounts of GH-1 splice variants were determined by semiquantitative and quantitative (TaqMan) RT-PCR. In the absence of DEX, only around 1% wt-GH-1 transcripts were the 17.5-kDa isoform, whereas the three mutant GH-1 variants produced 29, 39, and 78% of the 17.5-kDa isoform. DEX stimulated total GH-1 gene transcription from all constructs. Notably, however, DEX increased the amount of 17.5-kDa GH isoform relative to the 22- and 20-kDa isoforms produced from the mutated GH-1 variants, but not from wt-GH-1. This DEX-induced enhancement of 17.5-kDa GH isoform production, up to 100% in the most severe case, was completely blocked by the addition of RU486. In other studies, we measured cell proliferation rates, annexin V staining, and DNA fragmentation in cells transfected with the same GH-1 constructs. The results showed that that the 5'IVS-3 + 2-bp GH-1 gene mutation had a more severe impact on those measures than the splice site mutations within 5'IVS-3 + 6 bp or ISE +28, in line with the clinical severity observed with these mutations. Our findings that the proportion of 17.5-kDa produced from mutant GH-1 alleles increases with increased drive for gene expression may help to explain the variable onset progression, and severity observed in IGHD II.
Resumo:
Glucocorticoids play an essential role in the regulation of key physiological processes, including immunomodulation, brain function, energy metabolism, electrolyte balance and blood pressure. Exposure to naturally occurring compounds or industrial chemicals that impair glucocorticoid action may contribute to the increasing incidence of cognitive deficits, immune disorders and metabolic diseases. Potentially, "glucocorticoid disruptors" can interfere with various steps of hormone action, e.g. hormone synthesis, binding to plasma proteins, delivery to target cells, pre-receptor regulation of the ratio of active versus inactive hormones, glucocorticoid receptor (GR) function, or export and degradation of glucocorticoids. Several recent studies indicate that such chemicals exist and that some of them can cause multiple toxic effects by interfering with different steps of hormone action. For example, increasing evidence suggests that organotins disturb glucocorticoid action by altering the function of factors that regulate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) pre-receptor enzymes, by direct inhibition of 11beta-HSD2-dependent inactivation of glucocorticoids, and by blocking GR activation. These observations emphasize on the complexity of the toxic effects caused by such compounds and on the need of suitable test systems to assess their effects on each relevant step.
Resumo:
Glucocorticoids are steroid hormones with important functions in development, immune regulation, and glucose metabolism. The adrenal glands are the predominant source of glucocorticoids; however, there is increasing evidence for extraadrenal glucocorticoid synthesis in thymus, brain, skin, and vascular endothelium. We recently identified intestinal epithelial cells as an important source of glucocorticoids, which regulate the activation of local intestinal immune cells. The molecular regulation of intestinal glucocorticoid synthesis is currently unexplored. In this study we investigated the transcriptional regulation of the steroidogenic enzymes P450 side-chain cleavage enzyme and 11beta-hydroxylase, and the production of corticosterone in the murine intestinal epithelial cell line mICcl2 and compared it with that in the adrenocortical cell line Y1. Surprisingly, we observed a reciprocal stimulation pattern in these two cell lines. Elevation of intracellular cAMP induced the expression of steroidogenic enzymes in Y1 cells, whereas it inhibited steroidogenesis in mICcl2 cells. In contrast, phorbol ester induced steroidogenic enzymes in intestinal epithelial cells, which was synergistically enhanced upon transfection of cells with the nuclear receptors steroidogenic factor-1 (NR5A1) and liver receptor homolog-1 (NR5A2). Finally, we observed that basal and liver receptor homolog-1/phorbol ester-induced expression of steroidogenic enzymes in mICcl2 cells was inhibited by the antagonistic nuclear receptor small heterodimer partner. We conclude that the molecular basis of glucocorticoid synthesis in intestinal epithelial cells is distinct from that in adrenal cells, most likely representing an adaptation to the local environment and different requirements.
Resumo:
The nuclear receptor liver receptor homologue-1 (LRH-1, NR5A2) is a crucial transcriptional regulator of many metabolic pathways. In addition, LRH-1 is expressed in intestinal crypt cells where it regulates the epithelial cell renewal and contributes to tumorigenesis through the induction of cell cycle proteins. We have recently identified the intestinal epithelium as an important extra-adrenal source of immunoregulatory glucocorticoids. We show here that LRH-1 promotes the expression of the steroidogenic enzymes and the synthesis of corticosterone in murine intestinal epithelial cells in vitro. Interestingly, LRH-1 is also essential for intestinal glucocorticoid synthesis in vivo, as LRH-1 haplo-insufficiency strongly reduces the intestinal expression of steroidogenic enzymes and glucocorticoid synthesis upon immunological stress. These results demonstrate for the first time a novel role for LRH-1 in the regulation of intestinal glucocorticoid synthesis and propose LRH-1 as an important regulator of intestinal tissue integrity and immune homeostasis.
Resumo:
We describe a case of a 10 years old girl, which presented to the emergency room with non-specific gastro-intestinal symptoms, fatigue and low blood pressure. The clinical signs and laboratory value supported the diagnosis of Addison crisis with hypovolaemic shock. The pathophysiology and the therapy of this entity are discussed. Importantly, in children the aetiology may differ depending on age and sex. Based on the family history of autoimmune disorders, in our patient presenting with autoimmune adrenalitis and celiac disease, the diagnosis of an autoimmune polyendocrinopathy was made. A therapy of mineralcorticoids and glucocorticoids was initiated and a special gluten-free diet was prescribed. On this treatment our patient recovered promptly.