930 resultados para Glass fiber industry


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polymer matrix composites offer advantages for many applications due their combination of properties, which includes low density, high specific strength and modulus of elasticity and corrosion resistance. However, the application of non-destructive techniques using magnetic sensors for the evaluation these materials is not possible since the materials are non-magnetizable. Ferrites are materials with excellent magnetic properties, chemical stability and corrosion resistance. Due to these properties, these materials are promising for the development of polymer composites with magnetic properties. In this work, glass fiber / epoxy circular plates were produced with 10 wt% of cobalt or barium ferrite particles. The cobalt ferrite was synthesized by the Pechini method. The commercial barium ferrite was subjected to a milling process to study the effect of particle size on the magnetic properties of the material. The characterization of the ferrites was carried out by x-ray diffraction (XRD), field emission gun scanning electron microscopy (FEG-SEM) and vibrating sample magnetometry (VSM). Circular notches of 1, 5 and 10 mm diameter were introduced in the composite plates using a drill bit for the non-destructive evaluation by the technique of magnetic flux leakage (MFL). The results indicated that the magnetic signals measured in plates with barium ferrite without milling and cobalt ferrite showed good correlation with the presence of notches. The milling process for 12 h and 20 h did not contribute to improve the identification of smaller size notches (1 mm). However, the smaller particle size produced smoother magnetic curves, with fewer discontinuities and improved signal-to-noise ratio. In summary, the results suggest that the proposed approach has great potential for the detection of damage in polymer composites structures

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The research and development of wind turbine blades are essential to keep pace with worldwide growth in the renewable energy sector. Although currently blades are typically produced using glass fiber reinforced composite materials, the tendency for larger size blades, particularly for offshore applications, has increased the interest on carbon fiber reinforced composites because of the potential for increased stiffness and weight reduction. In this study a model of blade designed for large generators (5 MW) was studied on a small scale. A numerical simulation was performed to determine the aerodynamic loading using a Computational Fluid Dynamics (CFD) software. Two blades were then designed and manufactured using epoxy matrix composites: one reinforced with glass fibers and the other with carbon fibers. For the structural calculations, maximum stress failure criterion was adopted. The blades were manufactured by Vacuum Assisted Resin Transfer Molding (VARTM), typical for this type of component. A weight comparison of the two blades was performed and the weight of the carbon fiber blade was approximately 45% of the weight of the fiberglass reinforced blade. Static bending tests were carried out on the blades for various percentages of the design load and deflections measurements were compared with the values obtained from finite element simulations. A good agreement was observed between the measured and calculated deflections. In summary, the results of this study confirm that the low density combined with high mechanical properties of carbon fibers are particularly attractive for the production of large size wind turbine blades

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A novel diffractive-pumping scheme is proposed to improve the evanescent amplification using blazed fiber grating for the first time. We also investigate the cw-pumped-evanescent amplification at 1.55 mu m wavelength with the relative optical gain pumped at 1480 nm of around 2 dB based on side-polished fiber with the effective interaction length as long as 16 mm and with a heavily Er3+-doped (N-Er(3+) > 1.19 x 10(21) ions/cm(3)), low refractive index (n(1550) < 1.47) glass overlay, which has no concentration quenching (tau(f) = 9.0 ms).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

低损耗高强度碲酸盐玻璃光纤用光学材料的优化方案

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report development of a new fiber doped with PbSe quantum dots for nonlinear optical applications. PbSe quantum dots related absorption peaks were obtained at 1021, 1093 and 1351 nm. The resonant optical nonlinearity and attenuation at 1500 nm were measured to be 9.4 × 10−16 m2/W and 0.01 dB/m, respectively. The emission around 1540 nm was observed upon near resonant pumping at 1064 nm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This investigation aims to characterise the damping properties of the nonwoven materials with potential applications in automotive and aerospace industry. Nonwovens are a popular choice for many applications due to their relatively low manufacturing cost and unique properties. It is known that nonwovens are efficient energy dispersers for certain applications such as acoustic damping and ballistic impact. It is anticipated that these energy absorption properties could eventually be used to provide damping for mechanical vibrations. However the behaviour of nonwovens under dynamic load and vibration has not been investigated before. Therefore we intend to highlight these aspects of the behaviour of the nonwovens through this research. In order to obtain an insight to the energy absorption properties of the nonwoven fabrics, a range of tests has been performed. Forced vibration of the cantilever beam is used to explore damping over a range of resonance modes and input amplitudes. The tests are conducted on aramid, glass fibre and polyester fabrics with a range of area densities and various coatings. The tests clarified the general dynamic behaviour of the fabrics tested and the possible response in more real application condition as well. The energy absorption in both thickness and plane of the fabric is tested. The effects of the area density on the results are identified. The main absorption mechanism is known to be the friction. The frictional properties are improved by using a smaller fibre denier and increasing fibre length, this is a result of increasing contact surface between fibres. It is expected the increased friction result in improving damping. The results indicate different mechanism of damping for fiber glass fabrics compared to the aramid fabrics. The frequency of maximum efficiency of damping is identified for the fabrics tested. These can be used to recommend potential applications.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper the adequacy and the benefit of incorporating glass fibre reinforced polymer (GFRP) waste materials into polyester based mortars, as sand aggregates and filler replacements, are assessed. Different weight contents of mechanically recycled GFRP wastes with two particle size grades are included in the formulation of new materials. In all formulations, a polyester resin matrix was modified with a silane coupling agent in order to improve binder-aggregates interfaces. The added value of the recycling solution was assessed by means of both flexural and compressive strengths of GFRP admixed mortars with regard to those of the unmodified polymer mortars. Planning of experiments and data treatment were performed by means of full factorial design and through appropriate statistical tools based on analyses of variance (ANOVA). Results show that the partial replacement of sand aggregates by either type of GFRP recyclates improves the mechanical performance of resultant polymer mortars. In the case of trial formulations modified with the coarser waste mix, the best results are achieved with 8% waste weight content, while for fine waste based polymer mortars, 4% in weight of waste content leads to the higher increases on mechanical strengths. This study clearly identifies a promising waste management solution for GFRP waste materials by developing a cost-effective end-use application for the recyclates, thus contributing to a more sustainable fibre-reinforced polymer composites industry.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper a modified chalcogenide glass was studied by X-ray powder diffraction, differential thermal analysis, infrared and Raman scattering spectroscopies. The study of this new matrix opens new perspectives to fabricate Pr3+-doped fibers to operate as an optical amplifier in the 1.3 mum telecommunications window. The Pr3+-doped 70Ga(2)S(3)-30La(2)S(3) glass was modified through the substitution of La2S3 by La2O3, which improves the thermal stability of these glasses without any modification of phonon energy. The possibility to pull a fiber from this glass system without any devitrification is easily achieved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: This confocal microscopy study evaluated the cement/dentin and cement/post interfaces along theroot canalwallswhenfiberglasspostswerebonded to dentin using different types of cements. Material & Methods: Thirty endodontically treated premolars were divided into 3 groups according to the adhesive materials used in the bonding procedure: Prime & Bond 2.1/Self Cure + Enforce, RelyX Unicem and RelyX Luting. Rhodamine B dye was incorporated in the luting materials for the cementation of the fiber glass posts (Exacto, Angelus) to dentin. Three transversal slices (apical, middle and coronal) were examined under confocal laser scanning microscopy. Statistical analysis was performed using the Kappa, Kruskal-Wallis and Dunnet tests, in a significance level of 5%. Results: The Prime & Bond 2.1/Self Cure + Enforce presented a uniform formation of tags in the dentin but gaps in the cement/dentin interface. The RelyX Unicem and RelyX Luting presented an adhesive interface with a fewer amount of gaps, but showed shorter tag formation than the Enforce system. All cements presented the same pattern of bubbles inside the cements. The RelyX Luting presented a greater amount of cracks inside the cement in comparison with the other cements in the coronal third, while no difference was observed between RelyX Unicem and Enforce. The RelyX Luting showed the lowest quantity of cement penetration into the post. Conclusion: In general, the quality of bonding interfaces of fiber posts luted to root canals was affected by both location and type of cement.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Item 231-B-1