988 resultados para Glacial epoch.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the tropics, geochemical records from stalagmites have so far mainly been used to qualitatively reconstruct changes in precipitation, but several new methods to reconstruct past temperatures from stalagmite material have emerged recently: i) liquid–vapor homogenization of fluid inclusion water ii) noble gas concentrations in fluid inclusion water, iii) the partitioning of oxygen isotopes between fluid inclusion water and calcite, and iv) the abundance of the 13C18O16O (‘clumped’) isotopologue in calcite. We present, for the first time, a direct comparison of these four paleo-thermometers by applying them to a fossil stalagmite covering nearly two glacial–interglacial cycles (Marine Isotope Stages (MIS) 12–9) and to two modern stalagmites, all from northern Borneo. The temperature estimates from the different methods agree in most cases within errors for both the old and recent samples; reconstructed formation temperatures of the recent samples match within 2-sigma errors with measured cave temperatures. However, slight but systematic deviations are observed between noble gas and liquid–vapor homogenization temperatures. Whereas the temperature sensitivity of fluid inclusion δ18O and clumped isotopes is currently debated, we find that the calibration of Tremaine et al. (2011) for fluid inclusion δ18O and a synthetic calcite-based clumped isotope calibration (Ziegler et al., in prep.) yield temperature estimates consistent with the other methods. All methods (with the potential exception of clumped isotopes) show excellent agreement on the amplitude of glacial–interglacial temperature change, indicating temperature shifts of 4–5 °C. This amplitude is similar to the amplitude of Mg/Ca-based regional sea surface temperature records, when correcting for sea level driven changes in cave elevation. Our reconstruction of tropical temperature evolution over the time period from 440 to 320 thousand years ago (ka) adds support to the view that climate sensitivity to varying greenhouse forcing is substantial also in the deep tropics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe the creation of a data set describing changes related to the presence of ice sheets, including ice-sheet extent and height, ice-shelf extent, and the distribution and elevation of ice-free land at the Last Glacial Maximum (LGM), which were used in LGM experiments conducted as part of the fifth phase of the Coupled Modelling Intercomparison Project (CMIP5) and the third phase of the Palaeoclimate Modelling Intercomparison Project (PMIP3). The CMIP5/PMIP3 data sets were created from reconstructions made by three different groups, which were all obtained using a model-inversion approach but differ in the assumptions used in the modelling and in the type of data used as constraints. The ice-sheet extent in the Northern Hemisphere (NH) does not vary substantially between the three individual data sources. The difference in the topography of the NH ice sheets is also moderate, and smaller than the differences between these reconstructions (and the resultant composite reconstruction) and ice-sheet reconstructions used in previous generations of PMIP. Only two of the individual reconstructions provide information for Antarctica. The discrepancy between these two reconstructions is larger than the difference for the NH ice sheets, although still less than the difference between the composite reconstruction and previous PMIP ice-sheet reconstructions. Although largely confined to the ice-covered regions, differences between the climate response to the individual LGM reconstructions extend over the North Atlantic Ocean and Northern Hemisphere continents, partly through atmospheric stationary waves. Differences between the climate response to the CMIP5/PMIP3 composite and any individual ice-sheet reconstruction are smaller than those between the CMIP5/PMIP3 composite and the ice sheet used in the last phase of PMIP (PMIP2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The climates of the mid-Holocene (MH), 6,000 years ago, and of the Last Glacial Maximum (LGM), 21,000 years ago, have extensively been simulated, in particular in the framework of the Palaeoclimate Modelling Intercomparion Project. These periods are well documented by paleo-records, which can be used for evaluating model results for climates different from the present one. Here, we present new simulations of the MH and the LGM climates obtained with the IPSL_CM5A model and compare them to our previous results obtained with the IPSL_CM4 model. Compared to IPSL_CM4, IPSL_CM5A includes two new features: the interactive representation of the plant phenology and marine biogeochemistry. But one of the most important differences between these models is the latitudinal resolution and vertical domain of their atmospheric component, which have been improved in IPSL_CM5A and results in a better representation of the mid-latitude jet-streams. The Asian monsoon’s representation is also substantially improved. The global average mean annual temperature simulated for the pre-industrial (PI) period is colder in IPSL_CM5A than in IPSL_CM4 but their climate sensitivity to a CO2 doubling is similar. Here we show that these differences in the simulated PI climate have an impact on the simulated MH and LGM climatic anomalies. The larger cooling response to LGM boundary conditions in IPSL_CM5A appears to be mainly due to differences between the PMIP3 and PMIP2 boundary conditions, as shown by a short wave radiative forcing/feedback analysis based on a simplified perturbation method. It is found that the sensitivity computed from the LGM climate is lower than that computed from 2 × CO2 simulations, confirming previous studies based on different models. For the MH, the Asian monsoon, stronger in the IPSL_CM5A PI simulation, is also more sensitive to the insolation changes. The African monsoon is also further amplified in IPSL_CM5A due to the impact of the interactive phenology. Finally the changes in variability for both models and for MH and LGM are presented taking the example of the El-Niño Southern Oscillation (ENSO), which is very different in the PI simulations. ENSO variability is damped in both model versions at the MH, whereas inconsistent responses are found between the two versions for the LGM. Part 2 of this paper examines whether these differences between IPSL_CM4 and IPSL_CM5A can be distinguished when comparing those results to palaeo-climatic reconstructions and investigates new approaches for model-data comparisons made possible by the inclusion of new components in IPSL_CM5A.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reconstructions of salinity are used to diagnose changes in the hydrological cycle and ocean circulation. A widely used method of determining past salinity uses oxygen isotope (δOw) residuals after the extraction of the global ice volume and temperature components. This method relies on a constant relationship between δOw and salinity throughout time. Here we use the isotope-enabled fully coupled General Circulation Model (GCM) HadCM3 to test the application of spatially and time-independent relationships in the reconstruction of past ocean salinity. Simulations of the Late Holocene (LH), Last Glacial Maximum (LGM), and Last Interglacial (LIG) climates are performed and benchmarked against existing compilations of stable oxygen isotopes in carbonates (δOc), which primarily reflect δOw and temperature. We find that HadCM3 produces an accurate representation of the surface ocean δOc distribution for the LH and LGM. Our simulations show considerable variability in spatial and temporal δOw-salinity relationships. Spatial gradients are generally shallower but within ∼50% of the actual simulated LH to LGM and LH to LIG temporal gradients and temporal gradients calculated from multi-decadal variability are generally shallower than both spatial and actual simulated gradients. The largest sources of uncertainty in salinity reconstructions are found to be caused by changes in regional freshwater budgets, ocean circulation, and sea ice regimes. These can cause errors in salinity estimates exceeding 4 psu. Our results suggest that paleosalinity reconstructions in the South Atlantic, Indian and Tropical Pacific Oceans should be most robust, since these regions exhibit relatively constant δOw-salinity relationships across spatial and temporal scales. Largest uncertainties will affect North Atlantic and high latitude paleosalinity reconstructions. Finally, the results show that it is difficult to generate reliable salinity estimates for regions of dynamic oceanography, such as the North Atlantic, without additional constraints.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large freshwater lakes formed in North America and Europe during deglaciation following the Last Glacial Maximum. Rapid drainage of these lakes into the Oceans resulted in abrupt perturbations in climate, including the Younger Dryas and 8.2 kyr cooling events. In the mid-latitudes of the Southern Hemisphere major glacial lakes also formed and drained during deglaciation but little is known about the magnitude, organization and timing of these drainage events and their e ect on regional climate. We use 16 new single-grain optically stimulated luminescence (OSL) dates to de ne three stages of rapid glacial lake drainage in the Lago General Carrera/Lago Buenos Aires and Lago Cohrane/ Pueyrredón basins of Patagonia and provide the rst assessment of the e ects of lake drainage on the Paci c Ocean. Lake drainage occurred between 13 and 8 kyr ago and was initially gradual eastward into the Atlantic, then subsequently reorganized westward into the Paci c as new drainage routes opened up during Patagonian Ice Sheet deglaciation. Coupled ocean-atmosphere model experiments using HadCM3 with an imposed freshwater surface “hosing” to simulate glacial lake drainage suggest that a negative salinity anomaly was advected south around Cape Horn, resulting in brief but signi cant impacts on coastal ocean vertical mixing and regional climate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Last Glacial Maximum (LGM) exhibits different large-scale atmospheric conditions compared to present-day climate due to altered boundary conditions. The regional atmospheric circulation and associated precipitation patterns over Europe are characterized for the first time with a weather typing approach (circulation weather types, CWT) for LGM paleoclimate simulations. The CWT approach is applied to four representative regions across Europe. While the CWTs over Western Europe are prevailing westerly for both present-day and LGM conditions, considerable differences are identified elsewhere: Southern Europe experienced more frequent westerly and cyclonic CWTs under LGM conditions, while Central and Eastern Europe was predominantly affected by southerly and easterly flow patterns. Under LGM conditions, rainfall is enhanced over Western Europe but is reduced over most of Central and Eastern Europe. These differences are explained by changing CWT frequencies and evaporation patterns over the North Atlantic Ocean. The regional differences of the CWTs and precipitation patterns are linked to the North Atlantic storm track, which was stronger over Europe in all considered models during the LGM, explaining the overall increase of the cyclonic CWT. Enhanced evaporation over the North Atlantic leads to higher moisture availability over the ocean. Despite the overall cooling during the LGM, this explains the enhanced precipitation over southwestern Europe, particularly Iberia. This study links large-scale atmospheric dynamics to the regional circulation and associated precipitation patterns and provides an improved regional assessment of the European climate under LGM conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the main questions on Neoproterozoic geology regards the extent and dynamics of the glacial systems that are recorded in all continents. We present evidence for short transport distances and localized sediment sources for the Bebedouro Formation, which records Neoproterozoic glaciomarine sedimentation in the central-eastern Sao Francisco Craton (SFC), Brazil. New data are presented on clast composition, based on point counting in thin section and SHRIMP dating of pebbles and detrital zircon. Cluster analysis of clast compositional data revealed a pronounced spatial variability of clast composition on diamictite indicating the presence of individual glaciers or ice streams feeding the basin. Detrital zircon ages reveal distinct populations of Archean and Palaeoproterozoic age. The youngest detrital zircon dated at 874 +/- 9 Ma constrains the maximum depositional age of these diamictites. We interpret the provenance of the glacial diamictites to be restricted to sources inside the SFC, suggesting deposition in an environment similar to ice streams from modern, high latitude glaciers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Millennial-scale climate variation during the Last Glacial period is evident in many locations worldwide, but it is unclear if such variation occurred in the interior of tropical South America, and, if so, how the low-latitude variation was related to its high-latitude counterpart. A high-resolution record, derived from the deep drilling of sediments on the floor of Lake Titicaca in the southern tropical Andes, is presented that shows clear evidence of millennial-scale climate variation between ~60 and 20 ka BP. This variation is manifested by alternations of two interbedded sedimentary units. The two units have distinctive sedimentary, geochemical, and paleobiotic properties that are controlled by the relative abundance of terrigenous or nearshore components versus pelagic components. The sediments of more terrigenous or nearshore nature likely were deposited during regionally wetter climates when river transport of water and sediment was higher, whereas the sediments of more pelagic character were deposited during somewhat drier climates regionally. The majority of the wet periods inferred from the Lake Titicaca sediment record are correlated with the cold events in the Greenland ice cores and North Atlantic sediment cores, indicating that increased intensity of the South American summer monsoon was part of near-global scale climate excursions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new diatom species, Thalassiosira praeoestrupii Dumont, Baldauf and Barron, is described. The first occurrence of T. praeoestrupii in coastal California diatom-bearing outcrops occurs between the last occurrence of Rouxia californica at 6.0 Ma, and the first occurrence of Thalassiosira oestrupii at 5.1 Ma. The latter two species have customarily been used to identify the Miocene/Pliocene boundary. Paleomagnetic studies at Santa Cruz, California, demonstrate that the first occurrence of T. praeoestrupii coincides with the top of magnetic polarity Chron 5, which closely approximates the Miocene/Pliocene Epoch boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Last Glacial Maximum simulated sea surface temperature from the Paleo-Climate version of the National Center for Atmospheric Research Coupled Climate Model (NCAR-CCSM) are compared with available reconstructions and data-based products in the tropical and south Atlantic region. Model results are compared to data proxies based on the Multiproxy Approach for the Reconstruction of the Glacial Ocean surface product (MARGO). Results show that the model sea surface temperature is not consistent with the proxy-data in all of the region of interest. Discrepancies are found in the eastern, equatorial and in the high-latitude South Atlantic. The model overestimates the cooling in the southern South Atlantic (near 50 degrees S) shown by the proxy-data. Near the equator, model and proxies are in better agreement. In the eastern part of the equatorial basin the model underestimates the cooling shown by all proxies. A northward shift in the position of the subtropical convergence zone in the simulation suggests a compression or/and an equatorward shift of the subtropical gyre at the surface, consistent with what is observed in the proxy reconstruction. (C) 2008 Elsevier B.V. All rights reserved

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paleoclimate version of the National Center for Atmospheric Research Community Climate System Model version 3 (NCAR-CCSM3) is used to analyze changes in the water formation rates in the Atlantic, Pacific, and Indian Oceans for the Last Glacial Maximum (LGM), mid-Holocene (MH) and pre-industrial (PI) control climate. During the MH, CCSM3 exhibits a north-south asymmetric response of intermediate water subduction changes in the Atlantic Ocean, with a reduction of 2 Sv in the North Atlantic and an increase of 2 Sv in the South Atlantic relative to PI. During the LGM, there is increased formation of intermediate water and a more stagnant deep ocean in the North Pacific. The production of North Atlantic Deep Water (NADW) is significantly weakened. The NADW is replaced in large extent by enhanced Antarctic Intermediate Water (AAIW), Glacial North Atlantic Intermediate Water (GNAIW), and also by an intensified of Antarctic Bottom Water (AABW), with the latter being a response to the enhanced salinity and ice formation around Antarctica. Most of the LGM intermediate/mode water is formed at 27.4 < sigma(theta) < 29.0 kg/m(3), while for the MH and PI most of the subduction transport occurs at 26.5 < sigma(theta) < 27.4 kg/m(3). The simulated LGM Southern Hemisphere winds are more intense by 0.2-0.4 dyne/cm(2). Consequently, increased Ekman transport drives the production of intermediate water (low salinity) at a larger rate and at higher densities when compared to the other climatic periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The supply of nutrients to the low-latitude thermocline is largely controlled by intermediate-depth waters formed at the surface in the high southern latitudes. Silicic acid is an essential macronutrient for diatoms, which are responsible for a significant portion of marine carbon export production. Changes in ocean circulation, such as those observed during the last deglaciation, would influence the nutrient composition of the thermocline and, therefore, the relative abundance of diatoms in the low latitudes. Here we present the first record of the silicic acid content of the Atlantic over the last glacial cycle. Our results show that at intermediate depths of the South Atlantic, the silicic acid concentration was the same at the Last Glacial Maximum (LGM) as it is today, overprinted by high silicic acid pulses that coincided with abrupt changes in ocean and atmospheric circulation during Heinrich Stadials and the Younger Dryas. We suggest these pulses were caused by changes in intermediate water formation resulting from shifts in the subpolar hydrological cycle, with fundamental implications for the nutrient supply to the Atlantic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Premise of the study: Vellozia hirsuta forms a complex presenting wide morphological and anatomical variation, resulting in five specific names and 14 morpho-anatomical patterns occurring in disjunct populations. We carried out a phylogeographical study to investigate the existence of correlation among the genetic and morphological patterns within this complex, and to determine whether it is composed of various species or should be treated as an ochlospecies, a species having widely polymorphic and weakly polytypic complex variation, with morphological characteristics varying independently. Methods: We carried out phylogeographical analyses using cpDNA rpl32F-trnL intergenic region. Key results: We found 20 haplotypes in 23 populations sampled. The populations are genetically structured (Phi(ST) = 0.818) into four phylogeographical groups demonstrating geographical structuring but with no correlation with morpho-anatomical patterns. Our analyses do not support recognizing any of the species now synonymized under Vellozia hirsuta. The northern populations were the most genetically differentiated and could be considered a distinct taxon, as they are also morphologically different. Conclusions: It is recommended that Vellozia hirsuta be considered a single enormously variable species. The patterns of variation within V. hirsuta probably are related to climatic changes that occurred during the Pleistocene Epoch in tropical Brazil when reductions in forest cover favored the expansion of V. hirsuta populations into extensive lowland areas. The expansion of forest cover at the end of the glaciations would have again restricted the occurrence of campos rupestres vegetation to high elevations, which constitute the current centers of diversity of this species.