831 resultados para Geometry, Solid.
Resumo:
Collecting and transporting solid waste is a constant problem for municipalities and populations in general. Waste management should take into account the preservation of the environment and the reduction of costs. The goal with this paper is to address a real-life solid waste problem. The case reveals some general and specific characteristics which are not rare, but are not widely addressed in the literature. Furthermore, new methods and models to deal with sectorization and routing are introduced, which can be extended to other applications. Sectorization and routing are tackled following a two-phase approach. In the first phase, a new method is described for sectorization based on electromagnetism and Coulomb’s Law. The second phase addresses the routing problems in each sector. The paper addresses not only territorial division, but also the frequency with which waste is collected, which is a critical issue in these types of applications. Special characteristics related to the number and type of deposition points were also a motivation for this work. A new model for a Mixed Capacitated Arc Routing Problem with Limited Multi-Landfills is proposed and tested in real instances. The computational results achieved confirm the effectiveness of the entire approach.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Mecânica
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Old timber structures may show significant variation in the cross section geometry along the same element, as a result of both construction methods and deterioration. As consequence, the definition of the geometric parameters in situ may be both time consuming and costly. This work presents the results of inspections carried out in different timber structures. Based on the obtained results, different simplified geometric models are proposed in order to efficiently model the geometry variations found. Probabilistic modelling techniques are also used to define safety parameters of existing timber structures, when subjected to dead and live loads, namely self-weight and wind actions. The parameters of the models have been defined as probabilistic variables, and safety of a selected case study was assessed using the Monte Carlo simulation technique. Assuming a target reliability index, a model was defined for both the residual cross section and the time dependent deterioration evolution. As a consequence, it was possible to compute probabilities of failure and reliability indices, as well as, time evolution deterioration curves for this structure. The results obtained provide a proposal for definition of the cross section geometric parameters of existing timber structures with different levels of decay, using a simplified probabilistic geometry model and considering a remaining capacity factor for the decayed areas. This model can be used for assessing the safety of the structure at present and for predicting future performance.
Resumo:
Dissertação para obtenção do grau de doutor em Energia e Bioenergia
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Física
Resumo:
Dacron and nitrocellulose were evaluated as matrices for the dot enzyme linked immunosorbent assay (dot-ELISA) for schistosomiasis and compared to indirect immunofluorescence (IMF). Titration of sera from 18 schistosomiasis patients against soluble worm antigen preparation (SWAP) was carried out and sera from healthy individuals from non-endemic areas were used as controls. The IMF was less sensitive than the dot-ELISAs, although the difference was not statistically significant (p > 0.05). The dot-ELISA based on nitrocellulose was as sensitive as that using dacron. Stability did not differ between nitrocellulose and dacron. Specificity was lower when dacron was used than when nitrocellulose was used, although the difference was not statistically significant (p > 0.05). In conclusion, this work showed that nitrocellulose and dacron performed similarly in dot-ELISA, suggesting that they may be used alternatively in population surveillance in endemic areas.
Resumo:
The mobile IT era is here, it is still growing and expanding at a steady rate and, most of all, it is entertaining. Mobile devices are used for entertainment, whether social through the so-called social networks, or private through web browsing, video watching or gaming. Youngsters make heavy use of these devices, and even small children show impressive adaptability and skill. However not much attention is directed towards education, especially in the case of young children. Too much time is usually spent in games which only purpose is to keep children entertained, time that could be put to better use such as developing elementary geometric notions. Taking advantage of this pocket computer scenario, it is proposed an application geared towards small children in the 6 – 9 age group that allows them to consolidate knowledge regarding geometric shapes, forming a stepping stone that leads to some fundamental mathematical knowledge to be exercised later on. To achieve this goal, the application will detect simple geometric shapes like squares, circles and triangles using the device’s camera. The novelty of this application will be a core real-time detection system designed and developed from the ground up for mobile devices, taking into account their characteristic limitations such as reduced processing power, memory and battery. User feedback was be gathered, aggregated and studied to assess the educational factor of the application.
Resumo:
Epstein-Barr virus (EBV)-related post-transplant lymphoproliferative disease (PTLD) is one of the most serious complications associated with solid organ and hematopoietic stem cell transplantation. PTLD is most frequently seen with primary EBV infection post-transplant, a common scenario for pediatric solid organ recipients. Risk factors for infection or reactivation of EBV following solid organ transplant are stronger immunosuppressive therapy regimens, and being seronegative for receptor. For hematopoietic stem cell transplantation, the risk factors relate to the type of transplant, human leukocyte antigen disparity, the use of stronger immunosuppressants, T-cell depletion, and severe graft-versus-host disease. Mortality is high, and most frequent in patients who develop PTLD in the first six months post-transplant. The primary goal of this article is to provide an overview of the clinical manifestations, diagnosis, accepted therapies, and management of EBV infection in transplant recipients, and to suggest that the adoption of monitoring protocols could contribute to a reduction in related complications.
Resumo:
An ion emitter consisting of a sharp silver tip covered in RbAg4I5 solid electrolyte film has been developed and studied. An accelerating potential is applied and Ag+ ions are emitted from the tip’s apex by field evaporation. The emitted ions are collected by a Faraday cup, producing a current on the pico/nanoampere level which is read by an electrometer. The tips were produced mechanically by sandpaper polishing. The sharpest tip produced had a 2:4 m apex radius. Two deposition methods were studied: thermal vacuum and pulsed laser deposition. The best tip produced a peak current value of 96nA at 180oC, and a quasi-stable 4nA emission current at 160oC, both using an extraction potential of 10kV . The emission dependence on time, temperature and accelerating potential has been studied. Deposited films were characterized by X-ray diffraction (XRD), profilometry, optical and Scanning Electron Microscope (SEM) and Secondary Ion Mass Spectroscopy (SIMS) measurements. Several ion emitters were developed, the latter ones were all able to maintain stable high ion emissions for long periods of time. This investigation was a continuation of an ongoing project backed by the European Space Agency, with the objective of making a proof of concept of this kind of ion emitter with potential application on ion thrusters for orbiting satellites. Going forward, it would be interesting to make a finer analysis of the electrolyte’s conductivity at high temperatures, explore Wien Effect-based emission and to further develop a multi-tip ion emitter prototype.
Resumo:
This paper presents a simulation model, which was incorporated into a Geographic Information System (GIS), in order to calculate the maximum intensity of urban heat islands based on urban geometry data. The method-ology of this study stands on a theoretical-numerical basis (Okeâ s model), followed by the study and selection of existing GIS tools, the design of the calculation model, the incorporation of the resulting algorithm into the GIS platform and the application of the tool, developed as exemplification. The developed tool will help researchers to simulate UHI in different urban scenarios.
Resumo:
The effect of different anions within the ionic liquid in the characteristics of solid polymer electrolytes (SPEs) based on P(VDF-TrFE) has been investigated. 1-ethyl-3-methylimidazolium acetate, [C2mim][OAc], 1-ethyl-3-methylimidazolium triflate, [C2mim][(CF3SO3)3], 1-ethyl-3-methylimidazolium lactate, [C2mim][Lactate], 1-ethyl-3-methylimidazolium thiocyanate, [C2mim][SNC] and 1-ethyl-3-methylimidazolium hydrogen sulphate [C2mim][HSO4] have been used in SPE prepared by thermally induced phase separation (TIPS). The polymer phase, thermal and electrochemical properties of the SPE have been determined. The thermal and electrical properties of the SPEs strongly depend on the selected IL, as determined by their different interactions with the polymer matrix. The room temperature ionic conductivity increases in the following way for the different anions: [SNC] > [CF3SO3)3] > [HSO4] > [Lactate] > [OAc], which is mainly dependent on the viscosity of the ionic liquid.
Resumo:
Dissertação de mestrado em Design e Marketing