907 resultados para Generalized linear mixed model
Resumo:
Genome-wide association studies (GWAS) have been widely used in genetic dissection of complex traits. However, common methods are all based on a fixed-SNP-effect mixed linear model (MLM) and single marker analysis, such as efficient mixed model analysis (EMMA). These methods require Bonferroni correction for multiple tests, which often is too conservative when the number of markers is extremely large. To address this concern, we proposed a random-SNP-effect MLM (RMLM) and a multi-locus RMLM (MRMLM) for GWAS. The RMLM simply treats the SNP-effect as random, but it allows a modified Bonferroni correction to be used to calculate the threshold p value for significance tests. The MRMLM is a multi-locus model including markers selected from the RMLM method with a less stringent selection criterion. Due to the multi-locus nature, no multiple test correction is needed. Simulation studies show that the MRMLM is more powerful in QTN detection and more accurate in QTN effect estimation than the RMLM, which in turn is more powerful and accurate than the EMMA. To demonstrate the new methods, we analyzed six flowering time related traits in Arabidopsis thaliana and detected more genes than previous reported using the EMMA. Therefore, the MRMLM provides an alternative for multi-locus GWAS.
Resumo:
In many research areas (such as public health, environmental contamination, and others) one deals with the necessity of using data to infer whether some proportion (%) of a population of interest is (or one wants it to be) below and/or over some threshold, through the computation of tolerance interval. The idea is, once a threshold is given, one computes the tolerance interval or limit (which might be one or two - sided bounded) and then to check if it satisfies the given threshold. Since in this work we deal with the computation of one - sided tolerance interval, for the two-sided case we recomend, for instance, Krishnamoorthy and Mathew [5]. Krishnamoorthy and Mathew [4] performed the computation of upper tolerance limit in balanced and unbalanced one-way random effects models, whereas Fonseca et al [3] performed it based in a similar ideas but in a tow-way nested mixed or random effects model. In case of random effects model, Fonseca et al [3] performed the computation of such interval only for the balanced data, whereas in the mixed effects case they dit it only for the unbalanced data. For the computation of twosided tolerance interval in models with mixed and/or random effects we recomend, for instance, Sharma and Mathew [7]. The purpose of this paper is the computation of upper and lower tolerance interval in a two-way nested mixed effects models in balanced data. For the case of unbalanced data, as mentioned above, Fonseca et al [3] have already computed upper tolerance interval. Hence, using the notions persented in Fonseca et al [3] and Krishnamoorthy and Mathew [4], we present some results on the construction of one-sided tolerance interval for the balanced case. Thus, in order to do so at first instance we perform the construction for the upper case, and then the construction for the lower case.
Resumo:
The problem of reconfiguration of distribution systems considering the presence of distributed generation is modeled as a mixed-integer linear programming (MILP) problem in this paper. The demands of the electric distribution system are modeled through linear approximations in terms of real and imaginary parts of the voltage, taking into account typical operating conditions of the electric distribution system. The use of an MILP formulation has the following benefits: (a) a robust mathematical model that is equivalent to the mixed-integer non-linear programming model; (b) an efficient computational behavior with exiting MILP solvers; and (c) guarantees convergence to optimality using classical optimization techniques. Results from one test system and two real systems show the excellent performance of the proposed methodology compared with conventional methods. © 2012 Published by Elsevier B.V. All rights reserved.
Resumo:
This paper presents a mixed-integer linear programming model to solve the problem of allocating voltage regulators and fixed or switched capacitors (VRCs) in radial distribution systems. The use of a mixed-integer linear model guarantees convergence to optimality using existing optimization software. In the proposed model, the steady-state operation of the radial distribution system is modeled through linear expressions. The results of one test system and one real distribution system are presented in order to show the accuracy as well as the efficiency of the proposed solution technique. An heuristic to obtain the Pareto front for the multiobjective VRCs allocation problem is also presented. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Despite the widespread popularity of linear models for correlated outcomes (e.g. linear mixed modesl and time series models), distribution diagnostic methodology remains relatively underdeveloped in this context. In this paper we present an easy-to-implement approach that lends itself to graphical displays of model fit. Our approach involves multiplying the estimated marginal residual vector by the Cholesky decomposition of the inverse of the estimated marginal variance matrix. Linear functions or the resulting "rotated" residuals are used to construct an empirical cumulative distribution function (ECDF), whose stochastic limit is characterized. We describe a resampling technique that serves as a computationally efficient parametric bootstrap for generating representatives of the stochastic limit of the ECDF. Through functionals, such representatives are used to construct global tests for the hypothesis of normal margional errors. In addition, we demonstrate that the ECDF of the predicted random effects, as described by Lange and Ryan (1989), can be formulated as a special case of our approach. Thus, our method supports both omnibus and directed tests. Our method works well in a variety of circumstances, including models having independent units of sampling (clustered data) and models for which all observations are correlated (e.g., a single time series).
Resumo:
2000 Mathematics Subject Classification: 62J12, 62F35
Resumo:
Spectral unmixing (SU) is a technique to characterize mixed pixels of the hyperspectral images measured by remote sensors. Most of the existing spectral unmixing algorithms are developed using the linear mixing models. Since the number of endmembers/materials present at each mixed pixel is normally scanty compared with the number of total endmembers (the dimension of spectral library), the problem becomes sparse. This thesis introduces sparse hyperspectral unmixing methods for the linear mixing model through two different scenarios. In the first scenario, the library of spectral signatures is assumed to be known and the main problem is to find the minimum number of endmembers under a reasonable small approximation error. Mathematically, the corresponding problem is called the $\ell_0$-norm problem which is NP-hard problem. Our main study for the first part of thesis is to find more accurate and reliable approximations of $\ell_0$-norm term and propose sparse unmixing methods via such approximations. The resulting methods are shown considerable improvements to reconstruct the fractional abundances of endmembers in comparison with state-of-the-art methods such as having lower reconstruction errors. In the second part of the thesis, the first scenario (i.e., dictionary-aided semiblind unmixing scheme) will be generalized as the blind unmixing scenario that the library of spectral signatures is also estimated. We apply the nonnegative matrix factorization (NMF) method for proposing new unmixing methods due to its noticeable supports such as considering the nonnegativity constraints of two decomposed matrices. Furthermore, we introduce new cost functions through some statistical and physical features of spectral signatures of materials (SSoM) and hyperspectral pixels such as the collaborative property of hyperspectral pixels and the mathematical representation of the concentrated energy of SSoM for the first few subbands. Finally, we introduce sparse unmixing methods for the blind scenario and evaluate the efficiency of the proposed methods via simulations over synthetic and real hyperspectral data sets. The results illustrate considerable enhancements to estimate the spectral library of materials and their fractional abundances such as smaller values of spectral angle distance (SAD) and abundance angle distance (AAD) as well.
Resumo:
A generalized version of the nonequilibrium linear Glauber model with q states in d dimensions is introduced and analyzed. The model is fully symmetric, its dynamics being invariant under all permutations of the q states. Exact expressions for the two-time autocorrelation and response functions on a d-dimensional lattice are obtained. In the stationary regime, the fluctuation-dissipation theorem holds, while in the transient the aging is observed with the fluctuation-dissipation ratio leading to the value predicted for the linear Glauber model.
Resumo:
In a sample of censored survival times, the presence of an immune proportion of individuals who are not subject to death, failure or relapse, may be indicated by a relatively high number of individuals with large censored survival times. In this paper the generalized log-gamma model is modified for the possibility that long-term survivors may be present in the data. The model attempts to separately estimate the effects of covariates on the surviving fraction, that is, the proportion of the population for which the event never occurs. The logistic function is used for the regression model of the surviving fraction. Inference for the model parameters is considered via maximum likelihood. Some influence methods, such as the local influence and total local influence of an individual are derived, analyzed and discussed. Finally, a data set from the medical area is analyzed under the log-gamma generalized mixture model. A residual analysis is performed in order to select an appropriate model.
Resumo:
We compare Bayesian methodology utilizing free-ware BUGS (Bayesian Inference Using Gibbs Sampling) with the traditional structural equation modelling approach based on another free-ware package, Mx. Dichotomous and ordinal (three category) twin data were simulated according to different additive genetic and common environment models for phenotypic variation. Practical issues are discussed in using Gibbs sampling as implemented by BUGS to fit subject-specific Bayesian generalized linear models, where the components of variation may be estimated directly. The simulation study (based on 2000 twin pairs) indicated that there is a consistent advantage in using the Bayesian method to detect a correct model under certain specifications of additive genetics and common environmental effects. For binary data, both methods had difficulty in detecting the correct model when the additive genetic effect was low (between 10 and 20%) or of moderate range (between 20 and 40%). Furthermore, neither method could adequately detect a correct model that included a modest common environmental effect (20%) even when the additive genetic effect was large (50%). Power was significantly improved with ordinal data for most scenarios, except for the case of low heritability under a true ACE model. We illustrate and compare both methods using data from 1239 twin pairs over the age of 50 years, who were registered with the Australian National Health and Medical Research Council Twin Registry (ATR) and presented symptoms associated with osteoarthritis occurring in joints of the hand.
Resumo:
Binary operations on commutative Jordan algebras, CJA, can be used to study interactions between sets of factors belonging to a pair of models in which one nests the other. It should be noted that from two CJA we can, through these binary operations, build CJA. So when we nest the treatments from one model in each treatment of another model, we can study the interactions between sets of factors of the first and the second models.
Resumo:
During adolescence, cognitive abilities increase robustly. To search for possible related structural alterations of the cerebral cortex, we measured neuronal soma dimension (NSD = width times height), cortical thickness and neuronal densities in different types of neocortex in post-mortem brains of five 12-16 and five 17-24 year-olds (each 2F, 3M). Using a generalized mixed model analysis, mean normalized NSD comparing the age groups shows layer-specific change for layer 2 (p < .0001) and age-related differences between categorized type of cortex: primary/primary association cortex (BA 1, 3, 4, and 44) shows a generalized increase; higher-order regions (BA 9, 21, 39, and 45) also show increase in layers 2 and 5 but decrease in layers 3, 4, and 6 while limbic/orbital cortex (BA 23, 24, and 47) undergoes minor decrease (BA 1, 3, 4, and 44 vs. BA 9, 21, 39, and 45: p = .036 and BA 1, 3, 4, and 44 vs. BA 23, 24, and 47: p = .004). These data imply the operation of cortical layer- and type-specific processes of growth and regression adding new evidence that the human brain matures during adolescence not only functionally but also structurally.
Resumo:
1. Species distribution models are increasingly used to address conservation questions, so their predictive capacity requires careful evaluation. Previous studies have shown how individual factors used in model construction can affect prediction. Although some factors probably have negligible effects compared to others, their relative effects are largely unknown. 2. We introduce a general "virtual ecologist" framework to study the relative importance of factors involved in the construction of species distribution models. 3. We illustrate the framework by examining the relative importance of five key factors-a missing covariate, spatial autocorrelation due to a dispersal process in presences/absences, sample size, sampling design and modeling technique-in a real study framework based on plants in a mountain landscape at regional scale, and show that, for the parameter values considered here, most of the variation in prediction accuracy is due to sample size and modeling technique. Contrary to repeatedly reported concerns, spatial autocorrelation has only comparatively small effects. 4. This study shows the importance of using a nested statistical framework to evaluate the relative effects of factors that may affect species distribution models.
Resumo:
This paper presents a general expression to predict breeding values using animal models when the base population is selected, i.e. the means and variances of breeding values in the base generation differ among individuals. Rules for forming the mixed model equations are also presented. A numerical example illustrates the procedure.
Resumo:
Understanding the factors controlling fine root respiration (FRR) at different temporal scales will help to improve our knowledge about the spatial and temporal variability of soil respiration (SR) and to improve future predictions of CO2 effluxes to the atmosphere. Here we present a comparative study of how FRR respond to variability in soil temperature and moisture in two widely spread species, Scots pines (Pinus sylvestris L.) and Holm-oaks (HO; Quercus ilex L.). Those two species show contrasting water use strategies during the extreme summer-drought conditions that characterize the Mediterranean climate. The study was carried out on a mixed Mediterranean forest where Scots pines affected by drought induced die-back are slowly being replaced by the more drought resistant HO. FRR was measured in spring and early fall 2013 in excised roots freshly removed from the soil and collected under HO and under Scots pines at three different health stages: dead (D), defoliated (DP) and non-defoliated (NDP). Variations in soil temperature, soil water content and daily mean assimilation per tree were also recorded to evaluate FRR sensibility to abiotic and biotic environmental variations. Our results show that values of FRR were substantially lower under HO (1.26 ± 0.16 microgram CO2 /groot·min) than under living pines (1.89 ± 0.19 microgram CO2 /groot·min) which disagrees with the similar rates of soil respiration previously observed under both canopies and suggest that FRR contribution to total SR varies under different tree species. The similarity of FRR rates under HO and DP furthermore confirms other previous studies suggesting a recent Holm-oak root colonization of the gaps under dead trees. A linear mixed effect model approach indicated that seasonal variations in FRR were best explained by soil temperature (p<0.05) while soil moisture was not exerting any direct control over FRR, despite the low soil moisture values during the summer sampling. Plant assimilation rates were positively related to FRR explaining part of the observed variability (p<0.01). However the positive relations of FRR with plant assimilation occurred mainly during spring, when both soil moisture and plant assimilation rates were higher. Our results finally suggest that plants might be able to maintain relatively high rates of FRR during the sub-optimal abiotic and biotic summer conditions probably thanks to their capacity to re-mobilize carbon reserves and their capacity to passively move water from moister layers to upper layers with lower water potentials (where the FR were collected) by hydraulic lift.