907 resultados para Generalised Inverse
Resumo:
An inverse food-web model for the western Antarctic Peninsula (WAP) pelagic food web was constrained with data from Palmer Long Term Ecological Research (PAL-LTER) project annual austral summer sampling cruises. Model solutions were generated for 2 regions with Adelie penguin Pygoscelis adeliae colonies presenting different population trends (a northern and a southern colony) for a 12 yr period (1995-2006). Counter to the standard paradigm, comparisons of carbon flow through bacteria, microzooplankton, and krill showed that the diatom-krill-top predator food chain is not the dominant pathway for organic carbon exchanges. The food web is more complex, including significant contributions by microzooplankton and the microbial loop. Using both inverse model results and network indices, it appears that in the northern WAP the food web is dominated by the microbial food web, with a temporal trend toward its increasing importance. The dominant pathway for the southern WAP food web varies from year to year, with no detectable temporal trend toward dominance of microzooplankton versus krill. In addition, sensitivity analyses indicated that the northern colony of Adelie penguins, whose population size has been declining over the past 35 yr, appears to have sufficient krill during summer to sustain its basic metabolic needs and rear chicks, suggesting the importance of other processes in regulating the Adelie population decline.
Resumo:
Sea ice in the western Antarctic Peninsula (WAP) region is both highly variable and rapidly changing. In the Palmer Station region, the ice season duration has decreased by 92 d since 1978. The sea-ice changes affect ocean stratification and freshwater balance and in turn impact every component of the polar marine ecosystem. Long-term observations from the WAP nearshore and offshore regions show a pattern of chlorophyll (Chl) variability with three to five years of negative Chl anomalies interrupted by one or two years of positive anomalies (high and low Chl regimes). Both field observations and results from an inverse food-web model show that these high and low Chl regimes differed significantly from each other, with high primary productivity and net community production (NCP) and other rates associated with the high Chl years and low rates with low Chl years. Gross primary production rates (GPP) averaged 30 mmolC.m-2.d-1 in the low Chl years and 100 mmolC.m-2.d-1 in the high Chl years. Both large and small phytoplankton were more abundant and more productive in high Chl years than in low Chl years. Similarly, krill were more important as grazers in high Chl years, but did not differ from microzooplankton in high or low Chl years. Microzooplankton did not differ between high and low Chl years. Net community production differed significantly between high and low Chl years, but mobilized a similar proportion of GPP in both high and low Chl years. The composition of the NCP was uniform in high and low Chl years. These results mphasize the importance of microbial components in the WAP plankton system and suggest that food webs dominated by small phytoplankton can have pathways that funnel production into NCP, and likely, export.
Resumo:
This paper gives the first experimental characterisation of the phase noise response of the recently introduced Inverse Class E topology when operated as an amplifier and then as an oscillator. The results indicate that in amplifier and oscillator modes of operation conversion efficiencies of 64%, and 42% respectively are available, and that the excess PM noise added as a consequence of saturated Class E operation results in about a 10 dB increase in PM over that expected from a small-signal Class A amplifier operating at much lower efficiency. Inverse Class E phase transfer dependence on device drain bias and flicker noise are presented in order to show, respectively, that the Inverse Class E amplifier and oscillator follow the trends predicted by conventional phase noise theory. © 2007 EuMA.
Resumo:
This paper reports on the design methodology and experimental characterization of the inverse Class-E power amplifier. A demonstration amplifier with excellent second and third harmonic-suppression levels has been designed, constructed, and measured. The circuit fabricated using a 1.2-min gate-width GaAs MESFET is shown to be able to deliver 22-dBm output power at 2.3 GHz. The amplifier achieves a peak power-added efficiency of 64 % and drain efficiency of 69 %, and exhibits 11.6 dB power gain when operated from a 3-V supply voltage. Comparisons of simulated and measured results are given with good agreement between them being obtained. Experimental results are presented for the amplifier's response to Gaussian minimum shift keying modulation, where a peak error vector modulation value of 0.6% is measured.
Resumo:
In this paper, an analysis is performed in order to determine the effects that variations in circuit component values, frequency, and duty cycle have on the performance of the newly introduced inverse Class-E amplifier. Analysis of the inverse Class-E amplifier under the generalized condition of arbitrary duty cycle is performed and it is shown that the inverse Class-E amplifier is reasonably tolerant to circuit parameter variations. When compared to the conventional Class-E amplifier the inverse Class-E amplifier offers the potential for high efficiency at increased output power as well as higher peak output power levels than are available with a conventional Class-E amplifier. Further the inverse Class-E amplifier provides more flexibility for deployment with a pulsewidth modulator as the means of producing full-carrier amplitude modulation (AM) due to its ability to operate to high AM modulation indices.
Resumo:
The first analysis and synthesis equations for the newly introduced inverse Class-E amplifier when operated with a finite d.c. blocking capacitance and a finite d.c.-feed inductance are presented in the paper. Closed-form design equations are derived in order to establish the circuit component values required for optimum synthesis. Excellent agreement between numerical simulation results and theoretical prediction is obtained. It is shown that drain efficiency approaching 100 at a pre-specified output power level can be achieved as zero-current switching and zero-current derivative conditions are simultaneously satisfied. The proposed analysis offers the prospect for realistic MMIC implementation.
Resumo:
This paper proposes a novel image denoising technique based on the normal inverse Gaussian (NIG) density model using an extended non-negative sparse coding (NNSC) algorithm proposed by us. This algorithm can converge to feature basis vectors, which behave in the locality and orientation in spatial and frequency domain. Here, we demonstrate that the NIG density provides a very good fitness to the non-negative sparse data. In the denoising process, by exploiting a NIG-based maximum a posteriori estimator (MAP) of an image corrupted by additive Gaussian noise, the noise can be reduced successfully. This shrinkage technique, also referred to as the NNSC shrinkage technique, is self-adaptive to the statistical properties of image data. This denoising method is evaluated by values of the normalized signal to noise rate (SNR). Experimental results show that the NNSC shrinkage approach is indeed efficient and effective in denoising. Otherwise, we also compare the effectiveness of the NNSC shrinkage method with methods of standard sparse coding shrinkage, wavelet-based shrinkage and the Wiener filter. The simulation results show that our method outperforms the three kinds of denoising approaches mentioned above.