907 resultados para Galois connections


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In binocular rivalry, presentation of different images to the separate eyes leads to conscious perception alternating between the two possible interpretations every few seconds. During perceptual transitions, a stimulus emerging into dominance can spread in a wave-like manner across the visual field. These traveling waves of rivalry dominance have been successfully related to the cortical magnification properties and functional activity of early visual areas, including the primary visual cortex (V1). Curiously however, these traveling waves undergo a delay when passing from one hemifield to another. In the current study, we used diffusion tensor imaging (DTI) to investigate whether the strength of interhemispheric connections between the left and right visual cortex might be related to the delay of traveling waves across hemifields. We measured the delay in traveling wave times (ΔTWT) in 19 participants and repeated this test 6 weeks later to evaluate the reliability of our behavioral measures. We found large interindividual variability but also good test-retest reliability for individual measures of ΔTWT. Using DTI in connection with fiber tractography, we identified parts of the corpus callosum connecting functionally defined visual areas V1-V3. We found that individual differences in ΔTWT was reliably predicted by the diffusion properties of transcallosal fibers connecting left and right V1, but observed no such effect for neighboring transcallosal visual fibers connecting V2 and V3. Our results demonstrate that the anatomical characteristics of topographically specific transcallosal connections predict the individual delay of interhemispheric traveling waves, providing further evidence that V1 is an important site for neural processes underlying binocular rivalry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The right and left visual hemifields are represented in different cerebral hemispheres and are bound together by connections through the corpus callosum. Much has been learned on the functions of these connections from split-brain patients [1-4], but little is known about their contribution to conscious visual perception in healthy humans. We used diffusion tensor imaging and functional magnetic resonance imaging to investigate which callosal connections contribute to the subjective experience of a visual motion stimulus that requires interhemispheric integration. The "motion quartet" is an ambiguous version of apparent motion that leads to perceptions of either horizontal or vertical motion [5]. Interestingly, observers are more likely to perceive vertical than horizontal motion when the stimulus is presented centrally in the visual field [6]. This asymmetry has been attributed to the fact that, with central fixation, perception of horizontal motion requires integration across hemispheres whereas perception of vertical motion requires only intrahemispheric processing [7]. We are able to show that the microstructure of individually tracked callosal segments connecting motion-sensitive areas of the human MT/V5 complex (hMT/V5+; [8]) can predict the conscious perception of observers. Neither connections between primary visual cortex (V1) nor other surrounding callosal regions exhibit a similar relationship.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: To test in vitro the mechanical resistance, rotational misfit and failure mode of three original implant-abutment connections and to compare them to two connections between non-original abutments connected to one of the original implants. MATERIAL AND METHODS: Three different implants with small diameters (3.3 mm for Straumann Roxolid, 3.5 mm for Nobel Biocare Replace and Astra Tech Osseospeed TX) were connected with individualized titanium abutments. Twelve implants from each system were connected to their original abutments (Straumann CARES, Nobel Biocare Procera, Astra Tech Atlantis). Twenty-four Roxolid implants were connected with non-original abutments using CAD/CAM procedures from the other two manufacturers (12 Nobel Biocare Procera and 12 Astra Tech Atlantis). For the critical bending test, a Zwick/Roell 1475 machine and the Xpert Zwick/Roell software were used. RESULTS: The rotational misfit varied when comparing the different interfaces. The use of non-original grade V titanium abutments on Roxolid implants increased the force needed for deformation. The fracture mode was different with one of the original connections. CONCLUSIONS: Non-original abutments differ in design of the connecting surfaces and material and demonstrate higher rotational misfit. These differences may result in unexpected failure modes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objectives of the review were (1) to evaluate the accuracy of implant-level impressions in cases with internal and external connection abutments/reconstructions, and (2) to evaluate the incidence of technical complications of internal and external connection metal- or zirconia-based abutments and single-implant reconstructions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to maintain a productive workforce, organizations must acknowledge that many employees, particularly nurse aides, perform full-time care giving, both on and off the job. Competing demands between work and family can affect job performance, quality of care and bring on burnout.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract—Regeneration in the adult mammalian spinal cord is limited due to intrinsic properties of mature neurons and a hostile environment, mainly provided by central nervous system myelin and reactive astrocytes. Recent results indicate that propriospinal connections are a promising target for intervention to improve functional recovery. To study this functional regeneration in vitro we developed a model consisting of two organotypic spinal cord slices placed adjacently on multi-electrode arrays. The electrodes allow us to record the spontaneously occurring neuronal activity, which is often organized in network bursts. Within a few days in vitro (DIV), these bursts become synchronized between the two slices due to the formation of axonal connections. We cut them with a scalpel at different time points in vitro and record the neuronal activity 3 weeks later. The functional recovery ability was assessed by calculating the percentage of synchronized bursts between the two slices. We found that cultures lesioned at a young age (7–9 DIV) retained the high regeneration ability of embryonic tissue. However, cultures lesioned at older ages (>19 DIV) displayed a distinct reduction of synchronized activity. This reduction was not accompanied by an inability for axons to cross the lesion site. We show that functional regeneration in these old cultures can be improved by increasing the intracellular cAMP level with Rolipram or by placing a young slice next to an old one directly after the lesion. We conclude that co-cultures of two spinal cord slices are an appropriate model to study functional regeneration of intraspinal connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long-term sensitization in Aplysia is a well studied model for the examination of the cellular and molecules mechanisms of long-term memory. Several lines of evidence suggest long-term sensitization is mediated at least partially by long-term synaptic facilitation between the sensory and motor neurons. The sensitization training and one of its analogues, serotonin (5-HT), can induce long-term facilitation. In this study, another analogue to long-term sensitization training has been developed. Stimulation of peripheral nerves of pleural-pedal ganglia preparation induced long-term facilitation at both 24 hr and 48 hr. This is the first report that long-term facilitation in Aplysia persists for more than 24 hr, which is consistent with the observation that long-term sensitization lasts for more than one day. Thus, the data support the hypothesis that long-term facilitation is an important mechanism for long-term sensitization.^ One of the major differences between short-term and long-term facilitation is that long-term facilitation requires protein synthesis. Therefore, the effects of anisomycin, a protein synthesis inhibitor, on long-term facilitation was examined. Long-term facilitation induced by nerve stimulation was inhibited by 2 $\mu$M anisomycin, which inhibits $\sim$90% of protein synthesis. Nevertheless, at higher concentration (20 $\mu$M), anisomycin induced long-term facilitation by itself, which raises an interesting question about the function of anisomycin other than protein synthesis inhibition.^ Since protein synthesis is critical for long-term facilitation, a major goal is to identify and functionally characterize the molecules whose mRNA levels are altered during the formation of long-term facilitation. Behavioral training or its analogues (nerve stimulation and 5-HT) increases the level of mRNA of calmodulin (CaM). Thus, the role of Ca$\sp{2+}$-CaM-dependent protein kinase II (CaMKII), a major substrate of CaM, in long-term facilitation induced by nerve stimulation was examined. KN-62, a specific CaMKII inhibitor, did not block either the induction or the maintenance of long-term facilitation induced by nerve stimulation. These data indicate that CaMKII may not be involved in long-term facilitation. Another protein whose mRNA level of a molecule was increased by the behavioral training and the treatment of 5-HT is Aplysia tolloid/BMP-1-like protein 1 (apTBL-1). Tolloid in Drosophila and BMP-1 in human tissues are believed to be secreted as a metalloprotease to activate TGF-$\beta.$ Thus, the long-term effects of recombinant human TGF-$\beta1$ on synaptic strength were examined. Treatment of ganglia with TGF-$\beta1$ produced long-term facilitation, but not short-term or intermediate-term facilitation ($\le$4 hr). In addition, TGF-$\beta1$ and 5-HT were not additive in producing long-term facilitation, which indicates an interaction between two cascades. Moreover, 5-HT-induced facilitation (at both 24 hr and 48 hr) and nerve stimulation-induced facilitation (at 24 hr) were inhibited by TGF-$\beta$ sRII, a TGF-$\beta$ inhibitor. These results suggest that TGF-$\beta$ is part of the cascade of events underlying long-term sensitization, and also indicate that a signaling molecule used in development may also have functions in adult neuronal plasticity. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The macaque cortical visual system is hierarchically organized into two streams, the ventral stream for recognizing objects and the dorsal stream for analyzing spatial relationships. The ventral stream extends from striate cortex or area V1 to inferior temporal cortex (IT) through extra-striate areas V2 and V4. Between V1 and V2, the ventral stream consists of two roughly parallel sub-streams, one extending from the cytochrome oxidase (CO) rich blobs in V1 to the CO rich thin stripes in V2, the other extending from the interblobs in V1 to interstripes, in V2. The blob-dominated sub-stream is thought to analyze the surface features such as color, whereas the interblob-dominated one is thought to analyze the contour features such as shape. ^ In the current study, the organization of cortical pathways linking V2 thin stripe and interstripe compartments with area V4 was investigated using a combination of physiological and anatomical techniques. Different compartments of V2 were first characterized, in vivo, using optical recording of intrinsic cortical signals. These functionally derived maps of V2 stripe compartments were then used to guide iontophoretic injections of multiple, distinguishable, anterograde tracers into specific V2 compartments. The distribution of labeled axons was analyzed either in horizontal sections through the prelunate gyrus, or in tangentially sectioned portions of physically unfolded cortex containing the lunate sulcus, prelunate gyrus and superior temporal sulcus. When a V2 thin stripe and adjacent interstripe were injected with distinguishable tracers, a large primary and several secondary foci were observed in V4. The primary focus from the thin stripe injection was spatially segregated from the primary focus from the V2 interstripe injection, suggesting a retention of the pattern of compartmentation. ^ We examined the distribution of retrogradely labeled cells in V1 following the injections of tracers into V2 different compartments, in order to quantitate just how parallel the two sub-streams are from V1 to V2. Our results suggest that both blobs and interblobs project to thin stripes in V2, whereas only interblobs project to interstripes. This asymmetrical segregation argues against the original proposal of strict parallelism. (Abstract shortened by UMI.) ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to describe the induction and expression mechanisms of a persistent bursting activity in a horizontal slice preparation of the rat limbic system that includes the ventral part of the hippocampus and the entorhinal cortex. Disinhibition of this preparation by bicuculline led to interictal-like bursts in the CA3 region that triggered synchronous activity in the entorhinal cortex. Washout of bicuculline after a 1 hr application resulted in a maintained production of hippocampal bursts that continued to spread to the entorhinal cortex. Separation of CA3 from the entorhinal cortex caused the activity in the latter to become asynchronous with CA3 activity in the presence of bicuculline and disappear after washout; however, in CA3, neither the induction of bursting nor its persistence were affected. Associated with the CA3 persistent bursting, a strengthening of recurrent collateral excitatory input to CA3 pyramidal cells and a decreased input to CA3 interneurons was found. Both the induction of the persistent bursting and the changes in synaptic strength were prevented by antagonists of metabotropic glutamate 5 (mGlu5) or NMDA receptors or protein synthesis inhibitors and did not occur in slices from mGlu5 receptor knock-out mice. The above findings suggest potential synaptic mechanisms by which the hippocampus switches to a persistent interictal bursting mode that may support a spread of interictal-like bursting to surrounding temporal lobe regions.