990 resultados para Galaxies : Photometry
Resumo:
Clusters of galaxies are the most massive and large gravitationally bounded systems in the whole Universe. Their study is of fundamental importance to constrain cosmological parameters and to obtain informations regarding various kind of emission in different wavebands. In particular, in the radio domain, beside the diffuse emission, the study is focused on the radio galaxies emission. Radio galaxies in clusters can have peculiar morphology, since they interact with the intracluster medium (ICM) in which they are embedded. Particularly, in this thesis we focused our attention on the so-called Narrow-Angle Tailed radio galaxies (NAT), which present radio jets that are bent at extreme angle, up to 90 degrees, from their original orientation. Some NAT show a narrow extended structure and the two radio tails are not resolved even with high resolution radio observations. An example is provided by the source IC310, in the Perseus Cluster, whose structure has been recently interpreted as due to Doppler boosting effects of a relativistic jet oriented at a small angle with respect to the line of sight. If the structure is due to relativistic effects, this implies that the jets are relativistic at about 400 kpc from the core, but this is in contrast with unified models, which predict that for low-power radio source (NAT are classified as FRI radio galaxies) the jets decelerate to sub-relativistic speed within a few kpc from the core. To investigate this scientific topic, in this thesis we have analyzed the innermost structure of a sample of eleven radio galaxies showing a very narrow NAT structure. We can conclude that the structure of these radio galaxies is different from that of IC310. These radio galaxies are indeed strongly influenced by environmental effects and are similar to classical NAT sources.
Resumo:
SHARDS is an unbiased ultra-deep spectro-photometric survey with GTC@OSIRIS aimed at selecting and studying massive passively evolving galaxies at z=1.0-2.3 using a set of 24 medium-band filters (FWHM~17 nm) at 500-950 nm in GOODS-N. Our observing strategy is optimized to detect at z>1 the prominent Mg absorption feature at rest-frame ~ 280 nm, a distinctive, necessary, and sufficient feature of evolved stellar populations. Nonetheless, the data quality allow a plethora of studies on galaxy populations, including Emission Lines Galaxies (ELGs) about which we have started our first science verification project presented in this contribution.
Resumo:
Our main objective is to determine what kind of galaxies dominate the cosmic SFR density at z~2. Our sample consists of 24 galaxies in Chandra Deep Field South, a unique field for the study of galaxy evolution (12 observed with GNIRS/GEMINI and 12 with ISAAC/VLT). We use H alpha together with the already merged X-ray, ultraviolet, optical, near and mid-infrared imaging data to obtain estimations of SFRs, metallicities, stellar and dynamical masses, AGN activity, and extinction properties. We have obtained 15 Hα detections, 4 rotation curves, and SFR relationship for 7 galaxies. The metallicities obtained for 8 galaxies of the sample are compatible with the metallicities of local galaxies.
Resumo:
We analyze the properties of star forming regions in a sample of star forming galaxies at z = 0.84. Star forming regions are extracted from B band ACS-HST images. Previously we have substracted a model of the galaxy, fitting a bulged+disk model to the whole galaxy. Special care has been taken masking the star forming regions in the model fitting procedure, yielding more reliable results. We present here the properties of these star forming regions.
Resumo:
MEGARA (Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía) is an optical Integral-Field Unit (IFU) and Multi-Object Spectrograph (MOS) designed for the GTC 10.4 m telescope in La Palma. MEGARA will be a 3rd generation instrument for GTC. It is led by the University Complutense of Madrid with the collaboration of INAOE, IAA, UPM and comprises more than 50 researchers from a large number of institutions worldwide.
Resumo:
Using far-infrared imaging from the "Herschel Lensing Survey," we derive dust properties of spectroscopically confirmed cluster member galaxies within two massive systems at z ~ 0.3: the merging Bullet Cluster and the more relaxed MS2137.3-2353. Most star-forming cluster sources (~90%) have characteristic dust temperatures similar to local field galaxies of comparable infrared (IR) luminosity (T_dust ~ 30 K). Several sub-luminous infrared galaxy (LIRG; L_IR < 10^11 L_☉) Bullet Cluster members are much warmer (T_dust > 37 K) with far-infrared spectral energy distribution (SED) shapes resembling LIRG-type local templates. X-ray and mid-infrared data suggest that obscured active galactic nuclei do not contribute significantly to the infrared flux of these "warm dust" galaxies. Sources of comparable IR luminosity and dust temperature are not observed in the relaxed cluster MS2137, although the significance is too low to speculate on an origin involving recent cluster merging. "Warm dust" galaxies are, however, statistically rarer in field samples (>3σ), indicating that the responsible mechanism may relate to the dense environment. The spatial distribution of these sources is similar to the whole far-infrared bright population, i.e., preferentially located in the cluster periphery, although the galaxy hosts tend toward lower stellar masses (M_* < 10^10 M_☉). We propose dust stripping and heating processes which could be responsible for the unusually warm characteristic dust temperatures. A normal star-forming galaxy would need 30%-50% of its dust removed (preferentially stripped from the outer reaches, where dust is typically cooler) to recover an SED similar to a "warm dust" galaxy. These progenitors would not require a higher IR luminosity or dust mass than the currently observed normal star-forming population.
Resumo:
The accretion of minor satellites has been postulated as the most likely mechanism to explain the significant size evolution of massive galaxies over cosmic time. Using a sample of 629 massive (M_star~ 10^11 M_⊙) galaxies from the near-infrared Palomar/DEEP-2 survey, we explore what fraction of these objects have satellites with 0.01 < M_sat/M_central < 1 (1:100) up to z= 1 and what fraction have satellites with 0.1 < M_sat/M_central < 1 (1:10) up to z= 2 within a projected radial distance of 100 kpc. We find that the fraction of massive galaxies with satellites, after background correction, remains basically constant and close to 30 per cent for satellites with a mass ratio down to 1:100 up to z= 1, and close to 15 per cent for satellites with a 1:10 mass ratio up to z= 2. The family of spheroid-like massive galaxies presents a 2–3 times larger fraction of objects with satellites than the group of disc-like massive galaxies. A crude estimation of the number of 1:3 mergers a massive spheroid-like galaxy has experienced since z~2 is around 2. For a disc-like galaxy this number decreases to ~1.
Resumo:
We present measurements of the mean mid-infrared to submillimetre flux densities of massive (M_*≳ 10^11 M_⊙) galaxies at redshifts 1.7 < z < 2.9, obtained by stacking positions of known objects taken from the GOODS NICMOS Survey (GNS) catalogue on maps at 24 μm (Spitzer/MIPS); 70, 100 and 160 μm (Herschel/PACS); 250, 350 and 500 μm (BLAST); and 870 μm (LABOCA). A modified blackbody spectrum fit to the stacked flux densities indicates a median [interquartile] star formation rate (SFR) of SFR = 63[48, 81] M_⊙ yr^−1. We note that not properly accounting for correlations between bands when fitting stacked data can significantly bias the result. The galaxies are divided into two groups, disc-like and spheroid-like, according to their Sérsic indices, n. We find evidence that most of the star formation is occurring in n≤ 2 (disc-like) galaxies, with median [interquartile] SFR = 122[100, 150] M_⊙ yr^−1, while there are indications that the n > 2 (spheroid-like) population may be forming stars at a median [interquartile] SFR = 14[9, 20] M_⊙ yr^−1, if at all. Finally, we show that star formation is a plausible mechanism for size evolution in this population as a whole, but find only marginal evidence that it is what drives the expansion of the spheroid-like galaxies.
Resumo:
We present a study of the star-forming properties of a stellar mass-selected sample of galaxies in the GOODS (Great Observatories Origins Deep Survey) NICMOS Survey (GNS), based on deep Hubble Space Telescope (HST) imaging of the GOODS North and South fields. Using a stellar mass-selected sample, combined with HST/ACS and Spitzer data to measure both ultraviolet (UV) and infrared-derived star formation rates (SFRs), we investigate the star forming properties of a complete sample of ∼1300 galaxies down to log M_*= 9.5 at redshifts 1.5 < z < 3. Eight per cent of the sample is made up of massive galaxies with M_*≥ 10^11 M_⊙. We derive optical colours, dust extinctions and UV and infrared SFR to determine how the SFR changes as a function of both stellar mass and time. Our results show that SFR increases at higher stellar mass such that massive galaxies nearly double their stellar mass from star formation alone over the redshift range studied, but the average value of SFR for a given stellar mass remains constant over this ∼2 Gyr period. Furthermore, we find no strong evolution in the SFR for our sample as a function of mass over our redshift range of interest; in particular we do not find a decline in the SFR among massive galaxies, as is seen at z < 1. The most massive galaxies in our sample (log M_*≥ 11) have high average SFRs with values SFR_UV, corr= 103 ± 75 M_⊙ yr^−1, and yet exhibit red rest-frame (U−B) colours at all redshifts. We conclude that the majority of these red high-redshift massive galaxies are red due to dust extinction. We find that A_2800 increases with stellar mass, and show that between 45 and 85 per cent of massive galaxies harbour dusty star formation. These results show that even just a few Gyr after the first galaxies appear, there are strong relations between the global physical properties of galaxies, driven by stellar mass or another underlying feature of galaxies strongly related to the stellar mass.
Resumo:
We present the active galactic nucleus (AGN), star-forming, and morphological properties of a sample of 13 MIR-luminous (∫_24 700 μJy) IR-bright/optically-faint galaxies (IRBGs, ∫_24/f_R≲ 1000). While these z ∼ 2 sources were drawn from deep Chandra fields with >200 ks X-ray coverage, only seven are formally detected in the X-ray and four lack X-ray emission at even the 2σ level. Spitzer InfraRed Spectrograph (IRS) spectra, however, confirm that all of the sources are AGN-dominated in the mid-IR, although half have detectable polycyclic aromatic hydrocarbon (PAH) emission responsible for ∼25% of their mid-infrared flux density. When combined with other samples, this indicates that at least 30%–40% of luminous IRBGs have star formation rates in the ultraluminous infrared galaxy (ULIRG) range (∼100–2000 M_⨀ yr^−1). X-ray hardness ratios and MIR to X-ray luminosity ratios indicate that all members of the sample contain heavily X-ray obscured AGNs, 80% of which are candidates to be Compton thick. Furthermore, the mean X-ray luminosity of the sample, log L_2–10 keV(erg s^−1) ∼44.6, indicates that these IRBGs are Type 2 QSOs, at least from the X-ray perspective. While those sources most heavily obscured in the X-ray are also those most likely to display strong silicate absorption in the mid-IR, silicate absorption does not always accompany X-ray obscuration. Finally, ∼70% of the IRBGs are merger candidates, a rate consistent with that of sub-mm galaxies (SMGs), although SMGs appear to be physically larger than IRBGs. These characteristics are consistent with the proposal that these objects represent a later, AGN-dominated, and more relaxed evolutionary stage following soon after the star-formation-dominated one represented by the SMGs.
Resumo:
The Herschel Lensing Survey (HLS) takes advantage of gravitational lensing by massive galaxy clusters to sample a population of high-redshift galaxies which are too faint to be detected above the confusion limit of current far-infrared/submillimeter telescopes. Measurements from 100-500 μm bracket the peaks of the far-infrared spectral energy distributions of these galaxies, characterizing their infrared luminosities and star formation rates. We introduce initial results from our science demonstration phase observations, directed toward the Bullet cluster (1E0657-56). By combining our observations with LABOCA 870 μm and AzTEC 1.1 mm data we fully constrain the spectral energy distributions of 19 MIPS 24 μm-selected galaxies which are located behind the cluster. We find that their colors are best fit using templates based on local galaxies with systematically lower infrared luminosities. This suggests that our sources are not like local ultra-luminous infrared galaxies in which vigorous star formation is contained in a compact highly dust-obscured region. Instead, they appear to be scaled up versions of lower luminosity local galaxies with star formation occurring on larger physical scales.
Resumo:
We present results from the Spitzer Infrared Spectrograph spectral mapping observations of 15 local luminous infrared galaxies (LIRGs). In this paper, we investigate the spatial variations of the mid-IR emission which includes fine structure lines, molecular hydrogen lines, polycyclic aromatic features (PAHs), continuum emission, and the 9.7 μm silicate feature. We also compare the nuclear and integrated spectra. We find that the star formation takes place in extended regions (several kpc) as probed by the PAH emission, as well as the [Ne II]12.81 μm and [Ne III]15.56 μm emissions. The behavior of the integrated PAH emission and 9.7 μm silicate feature is similar to that of local starburst galaxies. We also find that the minima of the [Ne III]15.56 μm/[Ne II]12.81 μm ratio tends to be located at the nuclei and its value is lower than that of H II regions in our LIRGs and nearby galaxies. It is likely that increased densities in the nuclei of LIRGs are responsible for the smaller nuclear [Ne III]15.56 μm/[Ne II]12.81 μm ratios. This includes the possibility that some of the most massive stars in the nuclei are still embedded in ultracompact H II regions. In a large fraction of our sample, the 11.3 μm PAH emission appears more extended than the dust 5.5 μm continuum emission. We find a dependency of the 11.3 μm PAH/7.7 μm PAH and [Ne II]12.81 μm/11.3 μm PAH ratios with the age of the stellar populations. Smaller and larger ratios, respectively, indicate recent star formation. The estimated warm (300 K
Resumo:
Luminous Infrared (IR) Galaxies (LIRGs, L_IR=10^11-10 L_⨀) are an important cosmological class of galaxies as they are the main contributors to the co-moving star formation rate density of the universe at z=1. In this paper we present a guaranteed time observation (GTO) Spitzer InfraRed Spectrograph (IRS) program aimed to obtain spectral mapping of a sample of 14 local d<76Mpc LIRGs. The data cubes map, at least, the central 20arcsec X 20arcsec to 30 arcsec X 30 arcsec regions of the galaxies, and use all four IRS modules covering the full 5-38 μ m spectral range. The final goal of this project is to characterize fully the mid-IR properties of local LIRGs as a first step to understanding their more distant counterparts. In this paper we present the first results of this GTO program. The IRS spectral mapping data allow us to build spectral maps of the bright mid-IR emission lines (e.g., [Ne II] 12.81 μ m, [Ne III]15.56 μ m, [S III] 18.71 μ m, H_2 at 17 μ m), continuum, the 6.2 and 11.3 μ m polycyclic aromatic hydrocarbon (PAH) features, and the 9.7 μ m silicate feature, as well as to extract 1D spectra for regions of interest in each galaxy. The IRS data are used to obtain spatially resolved measurements of the extinction using the 9.7 μ m silicate feature, and to trace star forming regions using the neon lines and the PAH features. We also investigate a number of active galactic nuclei (AGN) indicators, including the presence of high excitation emission lines and a strong dust continuum emission at around 6 9.7 μ m . We finally use the integrated Spitzer/IRS spectra as templates of local LIRGs. We discuss several possible uses for these templates, including the calibration of the star formation rate of IR-bright galaxies at high redshift. We also predict the intensities of the brightest mid-IR emission lines for LIRGs as a function of redshift, and compare them with the expected sensitivities of future space IR missions.
Resumo:
Ultraviolet (UV) nonionizing continuum and mid-infrared (IR) emission constitute the basis of two widely used star formation (SF) indicators at intermediate and high redshifts. We study 2430 galaxies with z < 1.4 in the Extended Groth Strip with deep MIPS 24 μm observations from FIDEL, spectroscopy from DEEP2, and UV, optical, and near-IR photometry from the AEGIS. The data are coupled with dust-reddened stellar population models and Bayesian spectral energy distribution (SED) fitting to estimate dust-corrected star formation rates (SFRs). In order to probe the dust heating from stellar populations of various ages, the derived SFRs were averaged over various timescales—from 100 Myr for "current" SFR (corresponding to young stars) to 1-3 Gyr for long-timescale SFRs (corresponding to the light-weighted age of the dominant stellar populations). These SED-based UV/optical SFRs are compared to total IR luminosities extrapolated from 24 μm observations, corresponding to 10-18 μm rest frame. The total IR luminosities are in the range of normal star-forming galaxies and luminous IR galaxies (10^10-10^12 L_☉). We show that the IR luminosity can be estimated from the UV and optical photometry to within a factor of 2, implying that most z < 1.4 galaxies are not optically thick. We find that for the blue, actively star-forming galaxies the correlation between the IR luminosity and the UV/optical SFR shows a decrease in scatter when going from shorter to longer SFR-averaging timescales. We interpret this as the greater role of intermediate age stellar populations in heating the dust than what is typically assumed. Equivalently, we observe that the IR luminosity is better correlated with dust-corrected optical luminosity than with dust-corrected UV light. We find that this holds over the entire redshift range. Many so-called green valley galaxies are simply dust-obscured actively star-forming galaxies. However, there exist 24 μm detected galaxies, some with L_IR>10^11 L_☉, yet with little current SF. For them a reasonable amount of dust absorption of stellar light (but presumably higher than in nearby early-type galaxies) is sufficient to produce the observed levels of IR, which includes a large contribution from intermediate and old stellar populations. In our sample, which contains very few ultraluminous IR galaxies, optical and X-ray active galactic nuclei do not contribute on average more than ~50% to the mid-IR luminosity, and we see no evidence for a large population of "IR excess" galaxies.
Resumo:
We study the stellar and star formation properties of the host galaxies of 58 X-ray-selected AGNs in the GOODS portion of the Chandra Deep Field South (CDF-S) region at z ~ 0.5-1.4. The AGNs are selected such that their rest-frame UV to near-infrared spectral energy distributions (SEDs) are dominated by stellar emission; i.e., they show a prominent 1.6 μm bump, thus minimizing the AGN emission "contamination." This AGN population comprises approximately 50% of the X-ray-selected AGNs at these redshifts. We find that AGNs reside in the most massive galaxies at the redshifts probed here. Their characteristic stellar masses (M_* ~ 7.8 × 10^10 and M_* ~ 1.2 × 10^11 M_☉ at median redshifts of 0.67 and 1.07, respectively) appear to be representative of the X-ray-selected AGN population at these redshifts and are intermediate between those of local type 2 AGNs and high-redshift (z ~ 2) AGNs. The inferred black hole masses (M_BH ~ 2 × 10^8 M_☉) of typical AGNs are similar to those of optically identified quasars at similar redshifts. Since the AGNs in our sample are much less luminous (L_2–10 keV < 10^44 erg s^−1) than quasars, typical AGNs have low Eddington ratios (η ~ 0.01-0.001). This suggests that, at least at intermediate redshifts, the cosmic AGN "downsizing" is due to both a decrease in the characteristic stellar mass of typical host galaxies and less efficient accretion. Finally, there is no strong evidence in AGN host galaxies for either highly suppressed star formation (expected if AGNs played a role in quenching star formation) or elevated star formation when compared to mass-selected (i.e., IRAC-selected) galaxies of similar stellar masses and redshifts.