886 resultados para GRASP filtering
Resumo:
Purpose: The purpose of this study was to describe the outcome of patients with filtering blebs who were fit with contact lenses. Methods: We retrospectively studied patients with filtering blebs secondary to glaucoma or cataract surgery who were fit with contact lenses. Eight eyes from seven patients were identified. Results: Five patients (six eyes) were fit with gas permeable contact lenses and two patients (two eyes) were fit with soft contact lenses. Successful fits were achieved in all patients. No complications were observed after a mean follow-up of 64.6±28.5 months. Conclusions: No significant complications were recorded in our series of patients with filtering blebs who were fit with contact lenses. We think that when indications for fitting contact lenses are justified, patients with filtering blebs are acceptable candidates for contact lens use. However, adequate selection of cases, careful contact lens fitting, patient education, and close follow-up are necessary.
Resumo:
Guarded filtration surgery is commonly used to control the intraocular pressure (IOP) in glaucomatous patients. Filtration surgery lowers the IOP by creating a fistula between the inner compartments of the eye and the subconjunctival space (i.e., filtering bleb). There are several options to improve the function of filtering blebs and to prevent their failure. However, improvement of IOP control after guarded filtration procedures is associated with a higher frequency of bleb-related complications. Early (e.g., bleb leak, excessive filtration, flat anterior chamber, filtration failure) and late (e.g., bleb leak, excessive filtration and hypotony, symptomatic blebs, bleb encapsulation, filtration failure, bleb infection) complications associated with filtering procedures should be managed adequately to prevent further problems. Techniques to improve the function of filtering blebs and to treat postoperative complications have progressed over the past decade.
Resumo:
BACKGROUND AND OBJECTIVE: To determine the frequency of encapsulated blebs after guarded filtration procedures with mitomycin-C. PATIENTS AND METHODS: The authors reviewed the charts of all patients who had undergone a guarded filtration procedure with mitomycin-C. There were 235 patients (283 cases) who had more than 1 month of follow-up. RESULTS: An encapsulated bleb developed in 7 eyes (2.47%) of 6 patients. Identification of bleb encapsulation occurred at a mean follow-up time of 29.7 ± 14.6 days after surgery. The mean intraocular pressure at that point was 24.2 ± 13.5 mm Hg in the affected eyes. Three eyes were treated medically, and needling was performed in 4 eyes. CONCLUSION: There is a low frequency of encapsulated bleb formation after guarded filtration procedures with adjunctive mitomycin- C.
Resumo:
Object tracking is an active research area nowadays due to its importance in human computer interface, teleconferencing and video surveillance. However, reliable tracking of objects in the presence of occlusions, pose and illumination changes is still a challenging topic. In this paper, we introduce a novel tracking approach that fuses two cues namely colour and spatio-temporal motion energy within a particle filter based framework. We conduct a measure of coherent motion over two image frames, which reveals the spatio-temporal dynamics of the target. At the same time, the importance of both colour and motion energy cues is determined in the stage of reliability evaluation. This determination helps maintain the performance of the tracking system against abrupt appearance changes. Experimental results demonstrate that the proposed method outperforms the other state of the art techniques in the used test datasets.
Resumo:
In this Letter, we demonstrate how the observation of broadband frequency propagating torsional Alfvén waves in chromospheric magnetic flux tubes can provide valuable insight into their magnetic field structure. By implementing a full nonlinear three-dimensional magnetohydrodynamic numerical simulation with a realistic vortex driver, we demonstrate how the plasma structure of chromospheric magnetic flux tubes can act as a spatially dependent frequency filter for torsional Alfvén waves. Importantly, for solar magnetoseismology applications, this frequency filtering is found to be strongly dependent on magnetic field structure. With reference to an observational case study of propagating torsional Alfvén waves using spectroscopic data from the Swedish Solar Telescope, we demonstrate how the observed two-dimensional spatial distribution of maximum power Fourier frequency shows a strong correlation with our forward model. This opens the possibility of beginning an era of chromospheric magnetoseismology, to complement the more traditional methods of mapping the magnetic field structure of the solar chromosphere.
Resumo:
This paper contributes a new approach for developing UML software designs from Natural Language (NL), making use of a meta-domain oriented ontology, well established software design principles and Natural Language Processing (NLP) tools. In the approach described here, banks of grammatical rules are used to assign event flows from essential use cases. A domain specific ontology is also constructed, permitting semantic mapping between the NL input and the modeled domain. Rules based on the widely-used General Responsibility Assignment Software Principles (GRASP) are then applied to derive behavioral models.
Resumo:
Power dissipation and robustness to process variation have conflicting design requirements. Scaling of voltage is associated with larger variations, while Vdd upscaling or transistor upsizing for parametric-delay variation tolerance can be detrimental for power dissipation. However, for a class of signal-processing systems, effective tradeoff can be achieved between Vdd scaling, variation tolerance, and output quality. In this paper, we develop a novel low-power variation-tolerant algorithm/architecture for color interpolation that allows a graceful degradation in the peak-signal-to-noise ratio (PSNR) under aggressive voltage scaling as well as extreme process variations. This feature is achieved by exploiting the fact that all computations used in interpolating the pixel values do not equally contribute to PSNR improvement. In the presence of Vdd scaling and process variations, the architecture ensures that only the less important computations are affected by delay failures. We also propose a different sliding-window size than the conventional one to improve interpolation performance by a factor of two with negligible overhead. Simulation results show that, even at a scaled voltage of 77% of nominal value, our design provides reasonable image PSNR with 40% power savings. © 2006 IEEE.
Resumo:
Power dissipation and tolerance to process variations pose conflicting design requirements. Scaling of voltage is associated with larger variations, while Vdd upscaling or transistor up-sizing for process tolerance can be detrimental for power dissipation. However, for certain signal processing systems such as those used in color image processing, we noted that effective trade-offs can be achieved between Vdd scaling, process tolerance and "output quality". In this paper we demonstrate how these tradeoffs can be effectively utilized in the development of novel low-power variation tolerant architectures for color interpolation. The proposed architecture supports a graceful degradation in the PSNR (Peak Signal to Noise Ratio) under aggressive voltage scaling as well as extreme process variations in. sub-70nm technologies. This is achieved by exploiting the fact that some computations are more important and contribute more to the PSNR improvement compared to the others. The computations are mapped to the hardware in such a way that only the less important computations are affected by Vdd-scaling and process variations. Simulation results show that even at a scaled voltage of 60% of nominal Vdd value, our design provides reasonable image PSNR with 69% power savings.
Resumo:
The authors present a VLSI circuit for implementing wave digital filter (WDF) two-port adaptors. Considerable speedups over conventional designs have been obtained using fine grained pipelining. This has been achieved through the use of most significant bit (MSB) first carry-save arithmetic, which allows systems to be designed in which latency L is small and independent of either coefficient or input data wordlength. L is determined by the online delay associated with the computation required at each node in the circuit (in this case a multiply/add plus two separate additions). This in turn means that pipelining can be used to considerably enhance the sampling rate of a recursive digital filter. The level of pipelining which will offer enhancement is determined by L and is fine-grained rather than bit level. In the case of the circuit considered, L = 3. For this reason pipeline delays (half latches) have been introduced between every two rows of cells to produce a system with a once every cycle sample rate.
Resumo:
Terrestrial invertebrates constitute most of described animal biodiversity and soil is a major reservoir of this diversity. In the classical attempt to understand the processes supporting biodiversity, ecologists are currently seeking to unravel the differential roles of environmental filtering and competition for resources in niche partitioning processes: these processes are in principle distinct although they may act simultaneously, interact at multiple spatial and temporal scales, and are often confounded in studies of soil communities. We used a novel combination of methods based on stable isotopes and trait analysis to resolve these processes in diverse oribatid mite assemblages at spatial
scales at which competition for resources could in principle be a major driver. We also used a null model approach based on a general neutral model of beta diversity. A large and significant fraction of community variation was explainable in terms of linear and periodic spatial structures in the distribution of organic C, N and soil structure: species were clearly arranged along an environmental, spatially structured gradient. However, competition related trait differences did not map onto the distances separating species along the environmental gradient and neutral models provided a satisfying approximation of beta diversity patterns. The results represent the first robust evidence
that in very diverse soil arthropod assemblages resource-based niche partitioning plays a minor role while environmental filtering remains a fundamental driver of species distribution.
Combining multi-band and frequency-filtering techniques for speech recognition in noisy environments
Resumo:
While current speech recognisers give acceptable performance in carefully controlled environments, their performance degrades rapidly when they are applied in more realistic situations. Generally, the environmental noise may be classified into two classes: the wide-band noise and narrow band noise. While the multi-band model has been shown to be capable of dealing with speech corrupted by narrow-band noise, it is ineffective for wide-band noise. In this paper, we suggest a combination of the frequency-filtering technique with the probabilistic union model in the multi-band approach. The new system has been tested on the TIDIGITS database, corrupted by white noise, noise collected from a railway station, and narrow-band noise, respectively. The results have shown that this approach is capable of dealing with noise of narrow-band or wide-band characteristics, assuming no knowledge about the noisy environment.