854 resultados para GRAPHENE SHEETS
Resumo:
By increasing the density of exposed active edges, the perpendicularly oriented structure of MoSe2 nanosheets facilitates ion/electrolyte transport at the electrode interface and minimizes the restacking of nanosheets, while the graphene improves the electrical contact between the catalyst and the electrode. This makes the MoSe2/graphene hybrid perfect as a catalyst in the hydrogen evolution reaction (HER). It shows a greatly improved catalytic activity compared with bare MoSe2 nanosheets.
Resumo:
Various morphologies of the vertically-aligned graphene flakes were fabricated on the nanoporous templates treated with metal ions in solutions, as well as coated with a thin gold layer and activated in the low-temperature Ar plasma. The thickness and level of structural defects in the graphene flakes could be effectively controlled by a proper selection of the pre-treatment method. We have also demonstrated that various combinations of the flake thickness and defect levels can be obtained, and the morphology and density of the graphene pattern can be effectively controlled. The result obtained could be of interest for various applications requiring fabrication of large graphene networks with controllable properties.
Resumo:
A facile and up-scalable wet-mechanochemical process is designed for fabricating ultra-fine SnO2 nanoparticles anchored on graphene networks for use as anode materials for sodium ion batteries. A hierarchical structure of the SnO2@graphene composite is obtained from the process. The resultant rechargeable SIBs achieved high rate capability and good cycling stability.
Resumo:
A novel, highly selective resonance light scattering (RLS) method was researched and developed for the analysis of phenol in different types of industrial water. An important aspect of the method involved the use of graphene quantum dots (GQDs), which were initially obtained from the pyrolysis of citric acid dissolved in aqueous solutions. The GQDs in the presence of horseradish peroxidase (HRP) and H2O2 were found to react quantitatively with phenol such that the RLS spectral band (310 nm) was quantitatively enhanced as a consequence of the interaction between the GQDs and the quinone formed in the above reaction. It was demonstrated that the novel analytical method had better selectivity and sensitivity for the determination of phenol in water as compared to other analytical methods found in the literature. Thus, trace amounts of phenol were detected over the linear ranges of 6.00×10−8–2.16×10−6 M and 2.40×10−6–2.88×10−5 M with a detection limit of 2.20×10−8 M. In addition, three different spiked waste water samples and two untreated lake water samples were analysed for phenol. Satisfactory results were obtained with the use of the novel, sensitive and rapid RLS method.
Resumo:
A novel electrochemical biosensor, DNA/hemin/nafion–graphene/GCE, was constructed for the analysis of the benzo(a)pyrene PAH, which can produce DNA damage induced by a benzo(a)pyrene (BaP) enzyme-catalytic product. This biosensor was assembled layer-by-layer, and was characterized with the use of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and atomic force microscopy. Ultimately, it was demonstrated that the hemin/nafion–graphene/GCE was a viable platform for the immobilization of DNA. This DNA biosensor was treated separately in benzo(a)pyrene, hydrogen peroxide (H2O2) and in their mixture, respectively, and differential pulse voltammetry (DPV) analysis showed that an oxidation peak was apparent after the electrode was immersed in H2O2. Such experiments indicated that in the presence of H2O2, hemin could mimic cytochrome P450 to metabolize benzo(a)pyrene, and a voltammogram of its metabolite was recorded. The DNA damage induced by this metabolite was also detected by electrochemical impedance and ultraviolet spectroscopy. Finally, a novel, indirect DPV analytical method for BaP in aqueous solution was developed based on the linear metabolite versus BaP concentration plot; this method provided a new, indirect, quantitative estimate of DNA damage.
Resumo:
An efficient method for the analysis of hydroquinone at trace levels in water samples has been developed in the form of a fluorescent probe based on graphene quantum dots (GQDs). The analytical variable, fluorescence quenching, was generated from the formation of benzoquinone intermediates, which formed during the catalytic oxidation of hydroquinone by horseradish peroxidase (HRP). In general, the reaction mechanism involved hydroquinone, as an electron acceptor, which affected the surface state of GQDs via an electron transfer effect. The water-soluble GQDs were directly prepared by the pyrolysis of citric acid and with the use of the mentioned hybrid enzyme system, the detection limit for hydroquinone was as low as 8.4 × 10−8 M. Furthermore, this analysis was almost unaffected by other phenol and quinine compounds, such as phenol, resorcinol and other quinines, and therefore, the developed GQD method produced satisfactory results for the analysis of hydroquinone in several different lake water samples.
Resumo:
The long-term stability of methylammonium lead triiodide (MAPbI3) perovskite in moist environments is a paramount challenge to realise the commercialization of perovskite solar cells. In an attempt to address this concern, we have carried out systematic first-principles studies on the MAPbI3 perovskite with a hydrophobic graphene layer interfaced as a water barrier. We find there is a charge transfer at the graphene/MAPbI3 interface and electrons can be excited from graphene into the perovskite surface, leading to well separated electron–hole pairs, i.e. reduced recombination. By studying the optical properties, we find the hybrid graphene/MAPbI3 nanocomposite displays enhanced light absorption compared with the pristine MAPbI3. Furthermore, from an ab initio molecular dynamics simulation, the graphene/MAPbI3 nanocomposite is confirmed to be able to resist the reaction with water molecules, highlighting a great advantage of this nanocomposite in promoting long-term photovoltaic performance.
Resumo:
Mechanical flexibility is considered an asset in consumer electronics and next-generation electronic systems. Printed and flexible electronic devices could be embedded into clothing or other surfaces at home or office or in many products such as low-cost sensors integrated in transparent and flexible surfaces. In this context inks based on graphene and related two-dimensional materials (2DMs) are gaining increasing attention owing to their exceptional (opto)electronic, electrochemical and mechanical properties. The current limitation relies on the use of solvents, providing stable dispersions of graphene and 2DMs and fitting the proper fluidic requirements for printing, which are in general not environmentally benign, and with high boiling point. Non-toxic and low boiling point solvents do not possess the required rheological properties (i.e., surface tension, viscosity and density) for the solution processing of graphene and 2DMs. Such solvents (e.g., water, alcohols) require the addition of stabilizing agents such as polymers or surfactants for the dispersion of graphene and 2DMs, which however unavoidably corrupt their properties, thus preventing their use for the target application. Here, we demonstrate a viable strategy to tune the fluidic properties of water/ethanol mixtures (low-boiling point solvents) to first effectively exfoliate graphite and then disperse graphene flakes to formulate graphene-based inks. We demonstrate that such inks can be used to print conductive stripes (sheet resistance of ~13 kΩ/□) on flexible substrates (polyethylene terephthalate), moving a step forward towards the realization of graphene-based printed electronic devices.
Resumo:
Graphene films were produced by chemical vapor deposition (CVD) of pyridine on copper substrates. Pyridine-CVD is expected to lead to doped graphene by the insertion of nitrogen atoms in the growing sp2 carbon lattice, possibly improving the properties of graphene as a transparent conductive film. We here report on the influence that the CVD parameters (i.e., temperature and gas flow) have on the morphology, transmittance, and electrical conductivity of the graphene films grown with pyridine. A temperature range between 930 and 1070 °C was explored and the results were compared to those of pristine graphene grown by ethanol-CVD under the same process conditions. The films were characterized by atomic force microscopy, Raman and X-ray photoemission spectroscopy. The optical transmittance and electrical conductivity of the films were measured to evaluate their performance as transparent conductive electrodes. Graphene films grown by pyridine reached an electrical conductivity of 14.3 × 105 S/m. Such a high conductivity seems to be associated with the electronic doping induced by substitutional nitrogen atoms. In particular, at 930 °C the nitrogen/carbon ratio of pyridine-grown graphene reaches 3%, and its electrical conductivity is 40% higher than that of pristine graphene grown from ethanol-CVD.
Resumo:
Interaction of two different samples of graphene with DNA nucleobases and nucleosides is investigated by isothermal titration calorimetry. The relative interaction energies of the nucleobases decrease in the order guanine (G) > adenine (A) > cytosine (C) > thy mine (T) in aqueous solutions, although the positions of C and T seem to be interchangeable. The same trend is found with the nucleosides. Interaction energies of the A-T and G-C pairs are somewhere between those of the constituent bases. Theoretical calculations including van der Wools interaction and solvation energies give the trend G > A similar to T > C. The magnitudes of the interaction energies of the nucleobases with graphene are similar to those found with single-walled carbon nonotubes.
Resumo:
The formation of ordered arrays of molecules via self-assembly is a rapid, scalable route towards the realization of nanoscale architectures with tailored properties. In recent years, graphene has emerged as an appealing substrate for molecular self-assembly in two dimensions. Here, the first five years of progress in supramolecular organization on graphene are reviewed. The self-assembly process can vary depending on the type of graphene employed: epitaxial graphene, grown in situ on a metal surface, and non-epitaxial graphene, transferred onto an arbitrary substrate, can have different effects on the final structure. On epitaxial graphene, the process is sensitive to the interaction between the graphene and the substrate on which it is grown. In the case of graphene that strongly interacts with its substrate, such as graphene/Ru(0001), the inhomogeneous adsorption landscape of the graphene moiré superlattice provides a unique opportunity for guiding molecular organization, since molecules experience spatially constrained diffusion and adsorption. On weaker-interacting epitaxial graphene films, and on non-epitaxial graphene transferred onto a host substrate, self-assembly leads to films similar to those obtained on graphite surfaces. The efficacy of a graphene layer for facilitating planar adsorption of aromatic molecules has been repeatedly demonstrated, indicating that it can be used to direct molecular adsorption, and therefore carrier transport, in a certain orientation, and suggesting that the use of transferred graphene may allow for predictible molecular self-assembly on a wide range of surfaces.
Resumo:
We report a new method for the growth of reduced graphene oxide (rGO) on the 316L alloy of stainless steel (SS) and its relevance for biomedical applications. We demonstrate that electrochemical etching increases the concentration of metallic species on the surface and enables the growth of rGO. This result is supported through a combination of Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), scanning electron microscopy (SEM), density functional theory (DFT) calculations and static water contact angle measurements. Raman spectroscopy identifies the G and D bands for oxidized species of graphene at 1595 cm(-1) and 1350 cm(-1), respectively, and gives an ID/IG ratio of 1.2, indicating a moderate degree of oxidation. XPS shows -OH and -COOH groups in the rGO stoichiometry and static contact angle measurements confirm the wettability of rGO. SEM and AFM measurements were performed on different substrates before and after coronene treatment to confirm rGO growth. Cell viability studies reveal that these rGO coatings do not have toxic effects on mammalian cells, making this material suitable for biomedical and biotechnological applications.
Resumo:
In our previous report on resonance energy transfer from a dye molecule to graphene [J. Chem. Phys.129, 054703 (2008)], we had derived an expression for the rate of energy transfer from a dye to graphene. An integral in the expression for the rate was evaluated approximately. We found a Yuwaka-type dependence of the rate on the distance. We now present an exact evaluation of the integral involved, leading to very interesting results. For short distances (z < 20 A), the present rate and the previous rate are in good agreement. For larger distances, the rate is found to have a z(-4) dependence on the distance, exactly. Thus we predict that for the case of pyrene on graphene, it is possible to observe fluorescence quenching up to a distance of 300 A. This is in sharp contrast to the traditional fluorescence resonance energy transfer where the quenching is observable only up to 100 A.
Resumo:
The mechanical properties of polyvinyl alcohol (PVA) and poly(methyl methacrylate) (PMMA)-matrix composites reinforced by functionalized few-layer graphene (FG) have been evaluated using the nano-indentation technique. A significant increase in both the elastic modulus and hardness is observed with the addition of 0.6 wt% of graphene. The crystallinity of PVA also increases with the addition of FG. This and the good mechanical interaction between the polymer and the FG, which provides better load transfer between the matrix and the fiber, are suggested to be responsible for the observed improvement in mechanical properties of the polymers.
Resumo:
Arc discharge between graphite electrodes under a relatively high pressure of hydrogen yields graphene flakes generally containing 2-4 layers in the inner wall region of the arc chamber. The graphene flakes so obtained have been characterized by X-ray diffraction, atomic force microscopy, transmission electron microscopy, and Raman spectroscopy. The method is eminently suited to dope graphene with boron and nitrogen by carrying out arc discharge in the presence of diborane and pyridine respectively.