980 resultados para GENE SILENCING


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The bacterial pathogen Pseudomonas syringae pv tomato DC3000 suppresses plant innate immunity with effector proteins injected by a type III secretion system (T3SS). The cysteine protease effector HopN1, which reduces the ability of DC3000 to elicit programmed cell death in non-host tobacco, was found to also suppress the production of defence-associated reactive oxygen species (ROS) and callose when delivered by Pseudomonas fluorescens heterologously expressing a P. syringae T3SS. Purified His 6 -tagged HopN1 was used to identify tomato PsbQ, a member of the oxygen evolving complex of photosystem II (PSII), as an interacting protein. HopN1 localized to chloroplasts and both degraded PsbQ and inhibited PSII activity in chloroplast preparations, whereas a HopN1 D299A non-catalytic mutant lost these abilities. Gene silencing of NtPsbQ in tobacco compromised ROS production and programmed cell death.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many virus diseases of economic importance to agriculture result from mixtures of different pathogens invading the host at a given time. This contrasts with the relatively scarce studies available on the molecular events associated with virus---host interactions in mixed infections. Compared with single infections, co-infection of Nicotiana benthamiana with Potato virus X (PVX) and Potato virus Y (PVY) resulted in increased systemic symptoms (synergism) that led to necrosis of the newly emerging leaves and death of the plant. A comparative transcriptional analysis was undertaken to identify quantitative and qualitative differences in gene expression during this synergistic infection and correlate these changes with the severe symptoms it caused. Global transcription profiles of doubly infected leaves were compared with those from singly infected leaves using gene ontology enrichment analysis and metabolic pathway annotator software. Functional gene categories altered by the double infection comprise suites of genes regulated coordinately, which are associated with chloroplast functions (downregulated), protein synthesis and degradation (upregulated), carbohydrate metabolism (upregulated), and response to biotic stimulus and stress (upregulated). The expressions of reactive oxygen species?generating enzymes as well as several mitogen-activated protein kinases were also significantly induced. Accordingly, synergistic infection induced a severe oxidative stress in N. benthamiana leaves, as judged by increases in lipid peroxidation and by the generation of superoxide radicals in chloroplasts, which correlated with the misregulation of antioxidative genes in microarray data. Interestingly, expression of genes encoding oxylipin biosynthesis was uniquely upregulated by the synergistic infection. Virus-induced gene silencing of ?-dioxygenase1 delayed cell death during PVX?PVY infection.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methylation of cytosine in the 5 position of the pyrimidine ring is a major modification of the DNA in most organisms. In eukaryotes, the distribution and number of 5-methylcytosines (5mC) along the DNA is heritable but can also change with the developmental state of the cell and as a response to modifications of the environment. While DNA methylation probably has a number of functions, scientific interest has recently focused on the gene silencing effect methylation can have in eukaryotic cells. In particular, the discovery of changes in the methylation level during cancer development has increased the interest in this field. In the past, a vast amount of data has been generated with different levels of resolution ranging from 5mC content of total DNA to the methylation status of single nucleotides. We present here a database for DNA methylation data that attempts to unify these results in a common resource. The database is accessible via WWW (http://www.methdb.de). It stores information about the origin of the investigated sample and the experimental procedure, and contains the DNA methylation data. Query masks allow for searching for 5mC content, species, tissue, gene, sex, phenotype, sequence ID and DNA type. The output lists all available information including the relative gene expression level. DNA methylation patterns and methylation profiles are shown both as a graphical representation and as G/A/T/C/5mC-sequences or tables with sequence positions and methylation levels, respectively.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Precise mapping of DNA methylation patterns in CpG islands has become essential for understanding diverse biological processes such as the regulation of imprinted genes, X chromosome inactivation, and tumor suppressor gene silencing in human cancer. We describe a new method, MSP (methylation-specific PCR), which can rapidly assess the methylation status of virtually any group of CpG sites within a CpG island, independent of the use of methylation-sensitive restriction enzymes. This assay entails initial modification of DNA by sodium bisulfite, converting all unmethylated, but not methylated, cytosines to uracil, and subsequent amplification with primers specific for methylated versus unmethylated DNA. MSP requires only small quantities of DNA, is sensitive to 0.1% methylated alleles of a given CpG island locus, and can be performed on DNA extracted from paraffin-embedded samples. MSP eliminates the false positive results inherent to previous PCR-based approaches which relied on differential restriction enzyme cleavage to distinguish methylated from unmethylated DNA. In this study, we demonstrate the use of MSP to identify promoter region hypermethylation changes associated with transcriptional inactivation in four important tumor suppressor genes (p16, p15, E-cadherin, and von Hippel-Lindau) in human cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Post-transcriptional regulation of mRNA is facilitated by different mechanisms, such as microRNA (miRNA) induced gene silencing or fragile X mental retardation protein (FMRP) mediated repression either independent of or acting through cytoplasmic RNA Processing bodies (P bodies). DPTP99A, Lar, and Wg have known functions during synaptogenesis and may be targets of miR-8. Here, we provide evidence that miR-8 regulates DPTP99A in vitro. Non-endogenous miR-8 expressed using an UAS driver regulates Lar. Endogenous miR-8 may regulate DPTP99A in vivo. Here we show that FMRP is capable of colocalizing with the P body components: DCP1, HPat, and Me31B, but not CCR4. We also show that RNAi against HPat and Me31B but not CCR4 and DCP1 are required for FMRP’s repression of a translational reporter in vivo. This functional analysis provides additional insight into another aspect of FMRP’s and P bodies’ ability to cooperatively control repression of mRNA targets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As translation is the final step in gene expression it is particularly important to understand the processes involved in translation regulation. It was shown in the last years that a class of RNA, the nonprotein-coding RNAs (ncRNAs), is involved in regulation of gene expression via various mechanisms (e.g. gene silencing by microRNAs). Almost all of these ncRNA discovered so far target the mRNA in order to modulate protein biosynthesis, this is rather unexpected considering the crucial role of the ribosome during gene expression. However, recent data from our laboratory showed that there is a new class of ncRNAs, which target the ribosome itself [Gebetsberger et al., 2012/ Pircher et al, 2014]. These so called ribosome-associated ncRNAs (rancRNAs) have an impact on translation regulation, mainly by interfering / modulating the rate of protein biosynthesis. The main goal of this project is to identify and describe novel potential regulatory rancRNAs in H. volcanii with the focus on intergenic candidates. Northern blot analyses already revealed interactions with the ribosome and showed differential expression of rancRNAs during different growth phases or under specific stress conditions. To investigate the biological relevance of these rancRNAs, knock-outs were generated in H. volcanii which were used for phenotypic characterization studies. The rancRNA s194 showed association with the 50S ribosomal subunit in vitro and in vivo and was capable of inhibiting peptide bond formation. These preliminary data for the rancRNA s194 make it an interesting candidate for further functional studies to identify the molecular mechanisms by which rancRNAs can modulate protein biosynthesis. Characterization of further rancRNA candidates are also underway.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CpG island is a GC-rich motif occurred in gene promoter region, which can play important roles in gene silencing and imprinting. Here, we present a set of discriminant functions that can recognize the structural and compositional features of CpG islands in the putative promoter regions (PPRs) of human and mouse immunoglobulin (Ig) genes. We showed that the PPRs of both human and mouse Ig genes irrespective of gene chromosomal localization are apparently CpG island poor, with a low percentage of the CpG islands overlapped with the transcription start site (TSS). The human Ig genes that have CpG islands in the PPRs show a very narrow range of CpG densities. 47% of the Ig genes fall in the range of 3.5-4 CpGs/100 bp. In contrast, the non-Ig genes examined have a wide range of the density of CpG island, with 10.5% having the density of 8.1-15 CpGs/100 bp. Meantime, five patterns of the CpG distributions within the CpG islands have been classified: Pat A, B, C, D, and E. 21.6% and 10.8% of the Ig genes fall into the Pat B and Pat D groups, respectively, which were significantly higher than the non-Ig genes examined (8.2% and 3.8%). Moreover, the length of CpG islands is shorter in human Ig genes than in non-Ig genes but is much longer than in mouse orthologues. These findings provide a clear picture of non-neutral and nonrandom occurrence of the CpG islands in the PPRs of human and mouse Ig genes, which facilitate rational recommendations regarding their nomenclature. (C) 2005 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antisense transcription (transcription from the opposite strand to a protein-coding or sense strand) has been ascribed roles in gene regulation involving degradation of the corresponding sense transcripts (RNA interference), as well as gene silencing at the chromatin level. Global transcriptome analysis provides evidence that a large proportion of the genome can produce transcripts from both strands, and that antisense transcripts commonly link neighboring genes in complex loci into chains of linked transcriptional units. Expression profiling reveals frequent concordant regulation of sense/antisense pairs. We present experimental evidence that perturbation of an antisense RNA can alter the expression of sense messenger RNAs, suggesting that antisense transcription contributes to control of transcriptional outputs in mammals.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A powerful approach to gain understanding of molecular machinery responsible for membrane trafficking is through inactivation of gene function by RNA interference (RNAi). RNAi-mediated gene silencing occurs when a double-stranded RNA is introduced into cells and targets a complementary mRNA for degradation. The subsequent lack of mRNA prevents the synthesis of the corresponding protein and ultimately causes depletion of a particular gene product from the cell. The effects of such depletion can then by analyzed by functional, morphological, and biochemical assays. RNAi-mediated knockdowns of numerous gene products in cultured cells of mammalian and other species origins have provided significant new insight into traffic regulation and represent standard approaches in current cell biology. However, RNAi in the multicellular nematode Caenorhabditis elegans model allows RNAi studies within the context of a whole organism, and thus provides an unprecedented opportunity to explore effects of specific trafficking regulators within the context of distinct developmental stages and diverse cell types. In addition, various transgenic C. elegans strains have been developed that express marker proteins tagged with fluorescent proteins to facilitate the analysis of trafficking within the secretory and endocytic pathways. This chapter provides a detailed description of a basic RNAi approach that can be used to analyze the function of any gene of interest in secretory and endosomal trafficking in C. elegans. © 2013 Elsevier Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

SNARE proteins (soluble N-ethylmaleimide-sensitive factor attachment protein receptors) mediate membrane interactions and are conventionally divided into Q-SNAREs and R-SNAREs according to the possession of a glutamine or arginine residue at the core of their SNARE domain. Here, we describe a set of R-SNAREs from the ciliate Paramecium tetraurelia consisting of seven families encoded by 12 genes that are expressed simultaneously. The complexity of the endomembrane system in Paramecium can explain this high number of genes. All P. tetraurelia synaptobrevins (PtSybs) possess a SNARE domain and show homology to the Longin family of R-SNAREs such as Ykt6, Sec22 and tetanus toxin-insensitive VAMP (TI-VAMP). We localized four exemplary PtSyb subfamilies with GFP constructs and antibodies on the light and electron microscopic level. PtSyb1-1, PtSyb1-2 and PtSyb3-1 were found in the endoplasmic reticulum, whereas PtSyb2 is localized exclusively in the contractile vacuole complex. PtSyb6 was found cytosolic but also resides in regularly arranged structures at the cell cortex (parasomal sacs), the cytoproct and oral apparatus, probably representing endocytotic compartments. With gene silencing, we showed that the R-SNARE of the contractile vacuole complex, PtSyb2, functions to maintain structural integrity as well as functionality of the osmoregulatory system but also affects cell division.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microvascular endothelial monolayers from mouse myocardium (MyEnd) cultured for up to 5 days postconfluency became increasingly resistant to various barrier-compromising stimuli such as low extracellular Ca2+ and treatment with the Ca2+ ionophore A23187 and with the actin depolymerising compound cytochalasin D. In contrast, microvascular endothelial monolayers from mouse lung microvessels (PulmEnd) remained sensitive to these conditions during the entire culture period which corresponds to the well-known in vivo sensitivity of the lung microvasculature to Ca2+depletion and cytochalasin D treatment. One molecular difference between pulmonary and myocardial endothelial cells was found to be transglutaminase 1 (TGase1) which is strongly expressed in myocardial endothelial cells but is absent from pulmonary endothelial cells. Resistance of MyEnd cells to barrier-breaking conditions correlated strongly with translocation of TGase1 to intercellular junctions. Simultaneous inhibition of intracellular and extracellular TGase activity by monodansylcadaverine (MDC) strongly weakened barrier properties of MyEnd monolayers, whereas inhibition of extracellular TGases by the membrane-impermeable active site-directed TGase inhibitor R281 did not reduce barrier properties. Weakening of barrier properties could be also induced in MyEnd cells by downregulation of TGase1 expression using RNAi-based gene silencing. These findings suggest that crosslinking activity of intracellular TGase1 at intercellular junctions may play a role in controlling barrier properties of endothelial monolayers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA methylation is a major control program that modulates gene expression in a plethora of organisms. Gene silencing through methylation occurs through the activity of DNA methyltransferases, enzymes that transfer a methyl group from S-adenosyl-l-methionine to the carbon 5 position of cytosine. DNA methylation patterns are established by the de novo DNA methyltransferases (DNMTs) DNMT3A and DNMT3B and are subsequently maintained by DNMT1. Aging and age-related diseases include defined changes in 5-methylcytosine content and are generally characterized by genome-wide hypomethylation and promoter-specific hypermethylation. These changes in the epigenetic landscape represent potential disease biomarkers and are thought to contribute to age-related pathologies, such as cancer, osteoarthritis, and neurodegeneration. Some diseases, such as a hereditary form of sensory neuropathy accompanied by dementia, are directly caused by methylomic changes. Epigenetic modifications, however, are reversible and are therefore a prime target for therapeutic intervention. Numerous drugs that specifically target DNMTs are being tested in ongoing clinical trials for a variety of cancers, and data from finished trials demonstrate that some, such as 5-azacytidine, may even be superior to standard care. DNMTs, demethylases, and associated partners are dynamically shaping the methylome and demonstrate great promise with regard to rejuvenation. © Copyright 2012, Mary Ann Liebert, Inc. 2012.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Extracellular signal-regulated kinase 5 (ERK5) is activated in response to environmental stress and growth factors. Gene ablation of Erk5 in mice is embryonically lethal as a result of disruption of cardiovascular development and vascular integrity. We investigated vascular endothelial growth factor (VEGF)-mediated ERK5 activation in primary human dermal microvascular endothelial cells (HDMECs) undergoing proliferation on a gelatin matrix, and tubular morphogenesis within a collagen gel matrix. VEGF induced sustained ERK5 activation on both matrices. However, manipulation of ERK5 activity by siRNA-mediated gene silencing disrupted tubular morphogenesis without impacting proliferation. Overexpression of constitutively active MEK5 and ERK5 stimulated tubular morphogenesis in the absence of VEGF. Analysis of intracellular signalling revealed that ERK5 regulated AKT phosphorylation. On a collagen gel, ERK5 regulated VEGF-mediated phosphorylation of the pro-apoptotic protein BAD and increased expression of the anti-apoptotic protein BCL2, resulting in decreased caspase-3 activity and apoptosis suppression. Our findings suggest that ERK5 is required for AKT phosphorylation and cell survival and is crucial for endothelial cell differentiation in response to VEGF.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The amyloid cascade hypothesis places amyloid-β at the origin of Alzheimer's disease (AD). Amyloid-β (Aβ) is the product of the sequential cleavage of the amyloid precursor protein (APP) by the enzymes β- and γ-secretases. An inflammatory component to AD has been suggested in association with CD40 (a member of the tumor necrosis factor receptor superfamily (TNFRS) and its cognate ligand CD40L. In this study, I hypothesized that the neutralization of pro-inflammatory cytokines produced downstream of CD40/CD40L interaction would reduce APP processing. I also hypothesized that blocking the binding of different adaptor proteins to CD40 by mutating its cytoplasmic tail would result in significant reduction of the APP metabolites: Aβ, sAPPβ, sAPPα, CTFβ and CTFα. ^ Treatment with CD40L of human embryonic kidney cells over-expressing both APP and CD40 (HEK/APPsw/CD40) significantly increased levels of the cytokine granulocyte macrophage colony stimulating factor (GM-CSF). Neutralizing antibodies against GM-CSF mitigated the CD40L-induced production of Aβ in these cells. Treatment of the HEK/APPsw/CD40 cells with recombinant GM-CSF significantly increased Aβ levels. GM-CSF receptor gene silencing with shRNA significantly reduced Aβ levels to below base line in non-stimulated HEK/APPsw/CD40 cells. Silencing of the GM-CSF receptor also decreased APP endocytosis (therefore reducing the availability of APP to be cleaved in the endosomes). ^ Using CD40 mutants, I show that CD40L can increase levels of Aβ(1-40), Aβ(1-42), sAPPβ, sAPPα and CTFβ independently of TRAF signaling. TRAFs had been shown to be necessary for most CD40/CD40L-dependent signaling. An increase in mature/immature APP ratio after CD40L treatment of CD40wt and CD40-mutant cells was observed, reflecting alterations in APP trafficking. CD4OL treatment of a neuroblastoma cell line over-expressing CTFβ suggested that CD40L affected γ-secretase activity. Inhibition of γ-secretase activity significantly reduced sAPPβ levels in the CD40L treated HEK/APPsw CD40wt and the CD40-mutant cells. The latter suggests CD40/CD40L interaction primarily acts on γ-secretase and affects β-secretase via a positive feedback mechanism. ^ Taken together, the results of this dissertation suggest that GM-CSF operates downstream of CD40/CD40L interaction and that GM-CSF modulates Aβ production by influencing APP trafficking. Moreover, the data presented suggest that CD40/CD40L interaction can modulate APP processing via a mechanism independent of TRAF signaling. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background Post transcriptional gene silencing (PTGS) is a mechanism harnessed by plant biologists to knock down gene expression. siRNAs contribute to PTGS that are synthesized from mRNAs or viral RNAs and function to guide cellular endoribonucleases to target mRNAs for degradation. Plant biologists have employed electroporation to deliver artificial siRNAs to plant protoplasts to study gene expression mechanisms at the single cell level. One drawback of electroporation is the extensive loss of viable protoplasts that occurs as a result of the transfection technology. Results We employed fluorescent conjugated polymer nanoparticles (CPNs) to deliver siRNAs and knockdown a target gene in plant protoplasts. CPNs are non toxic to protoplasts, having little impact on viability over a 72 h period. Microscopy and flow cytometry reveal that CPNs can penetrate protoplasts within 2 h of delivery. Cellular uptake of CPNs/siRNA complexes were easily monitored using epifluorescence microscopy. We also demonstrate that CPNs can deliver siRNAs targeting specific genes in the cellulose biosynthesis pathway (NtCesA-1a and NtCesA-1b). Conclusions While prior work showed that NtCesA-1 is a factor involved in cell wall synthesis in whole plants, we demonstrate that the same gene plays an essential role in cell wall regeneration in isolated protoplasts. Cell wall biosynthesis is central to cell elongation, plant growth and development. The experiments presented here shows that NtCesA is also a factor in cell viability. We show that CPNs are valuable vehicles for delivering siRNAs to plant protoplasts to study vital cellular pathways at the single cell level.