901 resultados para GC-MS analysis


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermal degradation of PLA is a complex process since it comprises many simultaneous reactions. The use of analytical techniques, such as differential scanning calorimetry (DSC) and thermogravimetry (TGA), yields useful information but a more sensitive analytical technique would be necessary to identify and quantify the PLA degradation products. In this work the thermal degradation of PLA at high temperatures was studied by using a pyrolyzer coupled to a gas chromatograph with mass spectrometry detection (Py-GC/MS). Pyrolysis conditions (temperature and time) were optimized in order to obtain an adequate chromatographic separation of the compounds formed during heating. The best resolution of chromatographic peaks was obtained by pyrolyzing the material from room temperature to 600 °C during 0.5 s. These conditions allowed identifying and quantifying the major compounds produced during the PLA thermal degradation in inert atmosphere. The strategy followed to select these operation parameters was by using sequential pyrolysis based on the adaptation of mathematical models. By application of this strategy it was demonstrated that PLA is degraded at high temperatures by following a non-linear behaviour. The application of logistic and Boltzmann models leads to good fittings to the experimental results, despite the Boltzmann model provided the best approach to calculate the time at which 50% of PLA was degraded. In conclusion, the Boltzmann method can be applied as a tool for simulating the PLA thermal degradation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An analysis of thermal degradation products evolved during the melt processing of organo-layered silicates (OLS) was carried out via the use of a solid phase microextraction (SPME) technique. Two commerical OLSs and one produced in-house were prepared for comparision. The solid phase microextraction technique proved to be a very effective technique for investigating the degradation of the OLS at a specific processing temperature. The results showed that most available OLSs will degrade under typical conditions required for the melt processing of many polymers, including thermoplastic polyurethanes. It is suggested that these degradation products may lead to changes in the structure and properties of the final polymer, particularly in thermoplastic polyurethanes, which seem significantly succeptable to the presence of these products. It is also suggested that many commercially available OLSs are produced in such a way that results in an excess of unbound organic modifier, giving rise to a greater quantity of degradation products. All OLSs where compared and characterised by TGA and GC-MS. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smokeless powder additives are usually detected by their extraction from post-blast residues or unburned powder particles followed by analysis using chromatographic techniques. This work presents the first comprehensive study of the detection of the volatile and semi-volatile additives of smokeless powders using solid phase microextraction (SPME) as a sampling and pre-concentration technique. Seventy smokeless powders were studied using laboratory based chromatography techniques and a field deployable ion mobility spectrometer (IMS). The detection of diphenylamine, ethyl and methyl centralite, 2,4-dinitrotoluene, diethyl and dibutyl phthalate by IMS to associate the presence of these compounds to smokeless powders is also reported for the first time. A previously reported SPME-IMS analytical approach facilitates rapid sub-nanogram detection of the vapor phase components of smokeless powders. A mass calibration procedure for the analytical techniques used in this study was developed. Precise and accurate mass delivery of analytes in picoliter volumes was achieved using a drop-on-demand inkjet printing method. Absolute mass detection limits determined using this method for the various analytes of interest ranged between 0.03–0.8 ng for the GC-MS and between 0.03–2 ng for the IMS. Mass response graphs generated for different detection techniques help in the determination of mass extracted from the headspace of each smokeless powder. The analyte mass present in the vapor phase was sufficient for a SPME fiber to extract most analytes at amounts above the detection limits of both chromatographic techniques and the ion mobility spectrometer. Analysis of the large number of smokeless powders revealed that diphenylamine was present in the headspace of 96% of the powders. Ethyl centralite was detected in 47% of the powders and 8% of the powders had methyl centralite available for detection from the headspace sampling of the powders by SPME. Nitroglycerin was the dominant peak present in the headspace of the double-based powders. 2,4-dinitrotoluene which is another important headspace component was detected in 44% of the powders. The powders therefore have more than one headspace component and the detection of a combination of these compounds is achievable by SPME-IMS leading to an association to the presence of smokeless powders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs. In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug. Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Smokeless powder additives are usually detected by their extraction from post-blast residues or unburned powder particles followed by analysis using chromatographic techniques. This work presents the first comprehensive study of the detection of the volatile and semi-volatile additives of smokeless powders using solid phase microextraction (SPME) as a sampling and pre-concentration technique. Seventy smokeless powders were studied using laboratory based chromatography techniques and a field deployable ion mobility spectrometer (IMS). The detection of diphenylamine, ethyl and methyl centralite, 2,4-dinitrotoluene, diethyl and dibutyl phthalate by IMS to associate the presence of these compounds to smokeless powders is also reported for the first time. A previously reported SPME-IMS analytical approach facilitates rapid sub-nanogram detection of the vapor phase components of smokeless powders. A mass calibration procedure for the analytical techniques used in this study was developed. Precise and accurate mass delivery of analytes in picoliter volumes was achieved using a drop-on-demand inkjet printing method. Absolute mass detection limits determined using this method for the various analytes of interest ranged between 0.03 - 0.8 ng for the GC-MS and between 0.03 - 2 ng for the IMS. Mass response graphs generated for different detection techniques help in the determination of mass extracted from the headspace of each smokeless powder. The analyte mass present in the vapor phase was sufficient for a SPME fiber to extract most analytes at amounts above the detection limits of both chromatographic techniques and the ion mobility spectrometer. Analysis of the large number of smokeless powders revealed that diphenylamine was present in the headspace of 96% of the powders. Ethyl centralite was detected in 47% of the powders and 8% of the powders had methyl centralite available for detection from the headspace sampling of the powders by SPME. Nitroglycerin was the dominant peak present in the headspace of the double-based powders. 2,4-dinitrotoluene which is another important headspace component was detected in 44% of the powders. The powders therefore have more than one headspace component and the detection of a combination of these compounds is achievable by SPME-IMS leading to an association to the presence of smokeless powders.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was done in collaboration with J. Faria e Filhos company, a Madeira wine producer, and its main goal was to fully characterize three wines produced during 2014 harvest and identify possible improving points in the winemaking process. The winemaking process was followed during 4 weeks, being registered the amounts of grapes received, the fermentation temperatures, the time at which fermentation was stopped and evolution of must densities until the fortification time. The characterization of musts and wines was done in terms of density, total and volatile acidity, alcohol content, pH, total of polyphenol, organic acids composition, sugars concentration and the volatile profile. Also, it was developed and validated an analytical methodology to quantify the volatile fatty acids, namely using SPME-GC-MS. Briefly, the following key features were obtained for the latter methodology: linearity (R2=0.999) e high sensitivity (LOD =0.026-0.068 mg/L), suitable precision (repeatability and reproducibility lower than 8,5%) and good recoveries (103,11-119,46%). The results reveal that fermentation temperatures should be controlled in a more strictly manner, in order to ensure a better balance in proportion of some volatile compounds, namely the esters and higher alcohols and to minimize the concentration of some volatiles, namely hexanoic, octanoic and decanoic acids, that when above their odours threshold are not positive for the wine aroma. Also, regarding the moment to stop the fermentation, it was verified that it can be introduced changes which can also be benefit to guarantee the tipicity of Madeira wine bouquet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New psychoactive substances (NPSs) have appeared on the recreational drug market at an unprecedented rate in recent years. Many are not new drugs but failed products of the pharmaceutical industry. The speed and variety of drugs entering the market poses a new complex challenge for the forensic toxicology community. The detection of these substances in biological matrices can be difficult as the exact compounds of interest may not be known. Many NPS are sold under the same brand name and therefore users themselves may not know what substances they have ingested. The majority of analytical methods for the detection of NPSs tend to focus on a specific class of compounds rather than a wide variety. In response to this, a robust and sensitive method was developed for the analysis of various NPS by solid phase extraction (SPE) with gas chromatography mass spectrometry (GCMS). Sample preparation and derivatisation were optimised testing a range of SPE cartridges and derivatising agents, as well as derivatisation incubation time and temperature. The final gas chromatography mass spectrometry method was validated in accordance with SWGTOX 2013 guidelines over a wide concentration range for both blood and urine for 23 and 25 analytes respectively. This included the validation of 8 NBOMe compounds in blood and 10 NBOMe compounds in urine. This GC-MS method was then applied to 8 authentic samples with concentrations compared to those originally identified by NMS laboratories. The rapid influx of NPSs has resulted in the re-analysis of samples and thus, the stability of these substances is crucial information. The stability of mephedrone was investigated, examining the effect that storage temperatures and preservatives had on analyte stability daily for 1 week and then weekly for 10 weeks. Several laboratories identified NPSs use through the cross-reactivity of these substances with existing screening protocols such as ELISA. The application of Immunalysis ketamine, methamphetamine and amphetamine ELISA kits for the detection of NPS was evaluated. The aim of this work was to determine if any cross-reactivity from NPS substances was observed, and to determine whether these existing kits would identify NPS use within biological samples. The cross- reactivity of methoxetamine, 3-MeO-PCE and 3-MeO-PCP for different commercially point of care test (POCT) was also assessed for urine. One of the newest groups of compounds to appear on the NPS market is the NBOMe series. These drugs pose a serious threat to public health due to their high potency, with fatalities already reported in the literature. These compounds are falsely marketed as LSD which increases the chance of adverse effects due to the potency differences between these 2 substances. A liquid chromatography tandem mass spectrometry (LC-MS/MS) method was validated in accordance with SWGTOX 2013 guidelines for the detection for 25B, 25C and 25I-NBOMe in urine and hair. Long-Evans rats were administered 25B-, 25C- and 25I-NBOMe at doses ranging from 30-300 µg/kg over a period of 10 days. Tail flick tests were then carried out on the rats in order to determine whether any analgesic effects were observed as a result of dosing. Rats were also shaved prior to their first dose and reshaved after the 10-day period. Hair was separated by colour (black and white) and analysed using the validated LC-MS/MS method, assessing the impact hair colour has on the incorporation of these drugs. Urine was collected from the rats, analysed using the validated LC-MS/MS method and screened for potential metabolites using both LC-MS/MS and quadrupole time of flight (QToF) instrumentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cultivation of chilling-tolerant ornamental crops at lower temperature could reduce the energy demands of heated greenhouses. To provide a better understanding of how sub-optimal temperatures (12 degrees C vs. 16 degrees C) affect growth of the sensitive Petunia hybrida cultivar 'SweetSunshine Williams', the transcriptome, carbohydrate metabolism, and phytohormone homeostasis were monitored in aerial plant parts over 4 weeks by use of a microarray, enzymatic assays and GC-MS/MS. The data revealed three consecutive phases of chilling response. The first days were marked by a strong accumulation of sugars, particularly in source leaves, preferential up-regulation of genes in the same tissue and down-regulation of several genes in the shoot apex, especially those involved in the abiotic stress response. The midterm phase featured a partial normalization of carbohydrate levels and gene expression. After 3 weeks of chilling exposure, a new stabilized balance was established. Reduced hexose levels in the shoot apex, reduced ratios of sugar levels between the apex and source leaves and a higher apical sucrose/hexose ratio, associated with decreased activity and expression of cell wall invertase, indicate that prolonged chilling induced sugar accumulation in source leaves at the expense of reduced sugar transport to and reduced sucrose utilization in the shoot. This was associated with reduced levels of indole-3-acetic acid and abscisic acid in the apex and high numbers of differentially, particularly up-regulated genes, especially in the source leaves, including those regulating histones, ethylene action, transcription factors, and a jasmonate-ZIM-domain protein. Transcripts of one Jumonji C domain containing protein and one expansin accumulated in source leaves throughout the chilling period. The results reveal a dynamic and complex disturbance of plant function in response to mild chilling, opening new perspectives for the comparative analysis of differently tolerant cultivars.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study was done in collaboration with J. Faria e Filhos company, a Madeira wine producer, and its main goal was to fully characterize three wines produced during 2014 harvest and identify possible improving points in the winemaking process. The winemaking process was followed during 4 weeks, being registered the amounts of grapes received, the fermentation temperatures, the time at which fermentation was stopped and evolution of must densities until the fortification time. The characterization of musts and wines was done in terms of density, total and volatile acidity, alcohol content, pH, total of polyphenol, organic acids composition, sugars concentration and the volatile profile. Also, it was developed and validated an analytical methodology to quantify the volatile fatty acids, namely using SPME-GC-MS. Briefly, the following key features were obtained for the latter methodology: linearity (R2=0.999) e high sensitivity (LOD =0.026-0.068 mg/L), suitable precision (repeatability and reproducibility lower than 8,5%) and good recoveries (103,11-119,46%). The results reveal that fermentation temperatures should be controlled in a more strictly manner, in order to ensure a better balance in proportion of some volatile compounds, namely the esters and higher alcohols and to minimize the concentration of some volatiles, namely hexanoic, octanoic and decanoic acids, that when above their odours threshold are not positive for the wine aroma. Also, regarding the moment to stop the fermentation, it was verified that it can be introduced changes which can also be benefit to guarantee the tipicity of Madeira wine bouquet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: This study analyzes the chemical composition of ethanol root extracts of Maesa perlaria var formosana by gas chromatography-mass spectrometry (GC-MS). Methods: The dried root of Maesa perlaria var formosana was extracted with 95 % ethanol for composition analysis under the following optimum GC-MS conditions: 250 °C inlet temperature, 250 °C MSD detector temperature, and GC oven temperature programmed as follows: initial temperature held at 70 °C for 15 min, then increased at a rate of 2.5 °C/min and held at 170 °C for 15 min; then raised at a rate of 2 °C/min and kept at 180 °C for 20 min; then raised at 2 °C/min and kept at 250 °C for 20 min. Finally, it was raised at 3 °C/min and kept at 280 °C for 15 min. Results: A total of 59 chemical compounds were identified, representing 88.82 % of the composition of the ethanol extracts. The three major components, include 2,4-di-tert-butylphenol (16.76 %), stigmasterol (15.86 %) and campesterol (7.33 %). Conclusion: The results show that a total of 59 components were identified in the ethanol extract of Maesa perlaria var. formosana. The major component, 2,4-Di-tert-butylphenol, exhibits various biological activities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of present work was to investigate the phenolic and volatile composition of cherry, acacia, and oak (from different species) wood chips. By the use of HPLC-DAD 18 different phenolic compounds were detected and quantified while for volatile composition, 33 different compounds were detected by GC-MS. In general, wood samples from oak species showed the higher number of phenolic compounds detected, while cherry wood samples showed the lowest levels. In addition, some individual phenolic compounds were detected, specifically in some wood samples, such as robinetin in acacia woods and naringenin in cherry wood. For volatile composition, cherry wood chips samples showed the lowest volatile composition followed by increasing order by acacia, French, Portuguese and American wood chip samples. Oak wood chip samples from American species showed the highest volatile content, as a result of high levels of several specific compounds (furfural, 5-methyfurfural, β-methyl-γ-octalactones, guaiacol, vanillin and siringaldehyde).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

House dust is a heterogeneous matrix, which contains a number of biological materials and particulate matter gathered from several sources. It is the accumulation of a number of semi-volatile and non-volatile contaminants. The contaminants are trapped and preserved. Therefore, house dust can be viewed as an archive of both the indoor and outdoor air pollution. There is evidence to show that on average, people tend to stay indoors most of the time and this increases exposure to house dust. The aims of this investigation were to: " assess the levels of Polycyclic Aromatic Hydrocarbons (PAHs), elements and pesticides in the indoor environment of the Brisbane area; " identify and characterise the possible sources of elemental constituents (inorganic elements), PAHs and pesticides by means of Positive Matrix Factorisation (PMF); and " establish the correlations between the levels of indoor air pollutants (PAHs, elements and pesticides) with the external and internal characteristics or attributes of the buildings and indoor activities by means of multivariate data analysis techniques. The dust samples were collected during the period of 2005-2007 from homes located in different suburbs of Brisbane, Ipswich and Toowoomba, in South East Queensland, Australia. A vacuum cleaner fitted with a paper bag was used as a sampler for collecting the house dust. A survey questionnaire was filled by the house residents which contained information about the indoor and outdoor characteristics of their residences. House dust samples were analysed for three different pollutants: Pesticides, Elements and PAHs. The analyses were carried-out for samples of particle size less than 250 µm. The chemical analyses for both pesticides and PAHs were performed using a Gas Chromatography Mass Spectrometry (GC-MS), while elemental analysis was carried-out by using Inductively-Coupled Plasma-Mass Spectroscopy (ICP-MS). The data was subjected to multivariate data analysis techniques such as multi-criteria decision-making procedures, Preference Ranking Organisation Method for Enrichment Evaluations (PROMETHEE), coupled with Geometrical Analysis for Interactive Aid (GAIA) in order to rank the samples and to examine data display. This study showed that compared to the results from previous works, which were carried-out in Australia and overseas, the concentrations of pollutants in house dusts in Brisbane and the surrounding areas were relatively very high. The results of this work also showed significant correlations between some of the physical parameters (types of building material, floor level, distance from industrial areas and major road, and smoking) and the concentrations of pollutants. Types of building materials and the age of houses were found to be two of the primary factors that affect the concentrations of pesticides and elements in house dust. The concentrations of these two types of pollutant appear to be higher in old houses (timber houses) than in the brick ones. In contrast, the concentrations of PAHs were noticed to be higher in brick houses than in the timber ones. Other factors such as floor level, and distance from the main street and industrial area, also affected the concentrations of pollutants in the house dust samples. To apportion the sources and to understand mechanisms of pollutants, Positive Matrix Factorisation (PMF) receptor model was applied. The results showed that there were significant correlations between the degree of concentration of contaminants in house dust and the physical characteristics of houses, such as the age and the type of the house, the distance from the main road and industrial areas, and smoking. Sources of pollutants were identified. For PAHs, the sources were cooking activities, vehicle emissions, smoking, oil fumes, natural gas combustion and traces of diesel exhaust emissions; for pesticides the sources were application of pesticides for controlling termites in buildings and fences, treating indoor furniture and in gardens for controlling pests attacking horticultural and ornamental plants; for elements the sources were soil, cooking, smoking, paints, pesticides, combustion of motor fuels, residual fuel oil, motor vehicle emissions, wearing down of brake linings and industrial activities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this study available solid tire wastes in Bangladesh were characterized through proximate and ultimate analyses, gross calorific values and thermogravimetric analysis to investigate their suitability as feedstock for thermal recycling by pyrolysis technology. A new approach in heating system, fixedbed fire-tube heating pyrolysis reactor has been designed and fabricated for the recovery of liquid hydrocarbons from solid tire wastes. The tire wastes were pyrolysed in the internally heated fixed-bed fire-tube heating reactor and maximum liquid yield of 46-55 wt% of solid tire waste was obtained at a temperature of 475 oC, feed size 4 cm3, with a residence time of 5 s under N2 atmosphere. The liquid products were characterized by physical properties, elemental analysis, FT-IR, 1H-NMR, GC MS techniques and distillation. The results show that the liquid products are comparable to petroleum fuels whereas fractional distillations and desulphurization are essential to be used as alternative for diesel engine fuels.