872 resultados para Gás natural - Indústria


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the petroleum industry, water is always present in the reservoir formation together with petroleum and natural gas and this fact provokes the production of water with petroleum, resulting in a great environmental impact. Several methods can be applied for treatment of oily waters, such as: gravitational vases, granulated media filtration systems, flotation process, centrifugation process and the use of hydrocyclones, which can also be used in a combined way. However, the flotation process has showed a great efficiency as compared with other methods, because these methods do not remove great part of the emulsified oil. In this work was investigated the use of surfactants derived from vegetable oils, OSS and OGS, as collectors, using the flotation process in a glass column with a porous plate filter in its base for the input of the gaseous steam. For this purpose, oil/water emulsions were prepared using mechanical stirring, with concentrations around 300 ppm. The air flow rate was set at 700 cm3/min and the porous plate filter used for the generation of the air bubbles has pore size varying from 16 to 40 Pm. The column operated at constant volume (1500mL). A new methodology has been developed to collect the samples, where, instead of collecting the water phase, it was collected the oil phase removed by the process in the top of the flotation column. It has been observed that it is necessary to find an optimum surfactant concentration to achieve enhanced removal efficiency. Being for OSS 1.275 mmol/L and for OGS 0.840 mmol/L, with removal efficiencies of 93% and 99%, respectively, using synthetic solutions. For the produced water, the removal in these concentrations was 75% for OSS and 65% for OGS. It is possible to remove oil from water in a flotation process using surfactants of high HLB, fact that is against the own definition of HLB (Hydrophile-Lipophile Balance). The interfacial tension is an important factor in the oil removal process using a flotation process, because it has direct interference in the coalescence of the oil drops. The spreading of the oil of the air bubble should be considered in the process, and for the optimum surfactant concentrations it reached a maximum value. The removal kinetics for the flotation process using surfactants in the optimum concentration has been adjusted according to a first order model, for synthetic water as for the produced water.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Petroleum can be associated or not with natural gas, but in both cases water is always present in its formation. The presence of water causes several problems, such as the difficulty of removing the petroleum from the reservoir rock and the formation of waterin-oil and oil-in-water emulsions. The produced water causes environmental problems, which should be solved to reduce the effect of petroleum industry in the environment. The main objective of this work is to remove simultaneously from the produced water the dispersed petroleum and dissolved metals. The process is made possible through the use of anionic surfactants that with its hydrophilic heads interacts with ionized metals and with its lipophilic tails interacts with the oil. The studied metals were: calcium, magnesium, barium, and cadmium. The surfactants used in this research were derived from: soy oil, sunflower oil, coconut oil, and a soap obtained from a mixture of 5wt.% coconut oil and 95wt.% animal fat. It was used a sample of produced water from Terminal de São Sebastião, São Paulo. As the concentration of the studied metals in produced water presented values close to 300 mg/L, it was decided to use this concentration as reference for the development of this research. Molecular absorption and atomic absorption spectroscopy were used to determine petroleum and metals concentrations in the water sample, respectively. A constant pressure filtration system was used to promote the separation of solid and liquid phases. To represent the behavior of the studied systems it was developed an equilibrium model and a mathematical one. The obtained results showed that all used surfactants presented similar behavior with relation to metals extraction, being selected the surfactant derived from soy oil for this purpose. The values of the partition coefficients between the solid and liquid phases " D " for the studied metals varied from 0.2 to 1.1, while the coefficients for equilibrium model " K " varied from 0.0002 and 0.0009. The removal percentile for oil with all metals associated was near 100%, showing the efficiency of the process

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Innovative technologies using surfactant materials have applicability in several industrial fields, including petroleum and gas areas. This study seeks to investigate the use of a surfactant derived from coconut oil (SCO saponified coconut oil) in the recovery process of organic compounds that are present in oily effluents from petroleum industry. For this end, experiments were accomplished in a column of small dimension objectifying to verify the influence of the surfactant SCO in the efficiency of oil removal. This way, they were prepared emulsions with amount it fastens of oil (50, 100, 200 and 400 ppm), being determined the great concentrations of surfactant for each one of them. Some rehearsals were still accomplished with produced water of the industry of the petroleum to compare the result with the one of the emulsions. According to the experiments, it was verified that an increase of the surfactant concentration does not implicate in a greater oil removal. The separation process use gaseous bubbles formed when a gas stream pass a liquid column, when low surfactant concentrations are used, it occurs the coalescence of the dispersed oil droplets and their transport to the top of the column, forming a new continuous phase. Such surfactants lead to a gas-liquid interface saturation, depending on the used surfactant concentration, affecting the flotation process and influencing in the removal capacity of the oily dispersed phase. A porous plate filter, with pore size varying from 40 to 250 mm, was placed at the base of the column to allow a hydrodynamic stable operation. During the experimental procedures, the operating volume of phase liquid was held constant and the rate of air flow varied in each experiment. The resulting experimental of the study hydrodynamic demonstrated what the capturing of the oil was influenced by diameter of the bubbles and air flow. With the increase flow of 300 about to 900 cm3.min-1, occurred an increase in the removal of oil phase of 44% about to 66% and the removal kinetic of oil was defined as a reaction of 1° order

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The current natural gas production of 52 Mm3d-1 and the large projects for its expansion has been setting new boundaries for the Brazilian industry of oil and gas. So far, one of the biggest challenges regards to the logistics for gas transportation from offshore fields. Therefore, the transformation of natural gas into gasoline, diesel and/or olefins via Fischer-Tropsch synthesis would be an alternative to this matter. In this work, the production of hydrocarbons by Fischer-Tropsch synthesis in a slurry reactor was investigated and a perovskite-type catalyst (LayCu0,4Fe0,6O3 ± d) was used with y varying from 0 to 1 on a molar basis. In addition, Nb2O5 support was also applied in order to observe the selectivity of the produced hydrocarbons by the Fischer-Tropsch process. It is shown that the hydrogen conversion was influenced by the support as well as the different phases of the samples. The kinetic results for the CO2 production suffered great influence with the introduction of the Nb2O5 support throughout the series of samples studied. The catalysts allowed obtaining welldefined cuts of hydrocarbons in the range of C1-C6 and C17-C28, and these results were clearly influenced by the support and the lanthanum content. The higher olefin/paraffin ratio obtained was 1.8 when using a non-supported perovskite with y equal to 0.8. This would indicate the suitability of using this material for the production of olefins

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Innovative technologies using surfactant materials have applicability in several industrial fields, including petroleum and gas areas. This study seeks to investigate the use of a surfactant derived from coconut oil (SCO saponified coconut oil) in the recovery process of organic compounds that are present in oily effluents from petroleum industry. For this end, experiments were accomplished in a column of small dimension objectifying to verify the influence of the surfactant SCO in the efficiency of oil removal. This way, they were prepared emulsions with amount it fastens of oil (50, 100, 200 and 400 ppm), being determined the great concentrations of surfactant for each one of them. Some rehearsals were still accomplished with produced water of the industry of the petroleum to compare the result with the one of the emulsions. According to the experiments, it was verified that an increase of the surfactant concentration does not implicate in a greater oil removal. The separation process use gaseous bubbles formed when a gas stream pass a liquid column, when low surfactant concentrations are used, it occurs the coalescence of the dispersed oil droplets and their transport to the top of the column, forming a new continuous phase. Such surfactants lead to a gas-liquid interface saturation, depending on the used surfactant concentration, affecting the flotation process and influencing in the removal capacity of the oily dispersed phase. A porous plate filter, with pore size varying from 40 to 250 mm, was placed at the base of the column to allow a hydrodynamic stable operation. During the experimental procedures, the operating volume of phase liquid was held constant and the rate of air flow varied in each experiment. The resulting experimental of the study hydrodynamic demonstrated what the capturing of the oil was influenced by diameter of the bubbles and air flow. With the increase flow of 300 about to 900 cm3.min-1, occurred an increase in the removal of oil phase of 44% about to 66% and the removal kinetic of oil was defined as a reaction of 1° order.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The underground natural gas found associated or not with oil is characterized by a mixture of hydrocarbons and residual components such as carbon dioxide (CO2), nitrogen gas (N2) and hydrogen sulfide (H2S), called contaminants. The H2S especially promotes itself as a contaminant of natural gas to be associated with corrosion of pipelines, to human toxicity and final applications of Natural Gas (NG). The sulfur present in the GN must be fully or partially removed in order to meet the market specifications, security, transport or further processing. There are distinct and varied methods of desulfurization of natural gas processing units used in Natural Gas (UPGN). In order to solve these problems have for example the caustic washing, absorption, the use of membranes and adsorption processes is costly and great expenditure of energy. Arises on such findings, the need for research to active processes of economic feasibility and efficiency. This work promoted the study of the adsorption of sulfide gas in polymer matrices hydrogen pure and modified. The substrates of Poly(vinyl chloride) (PVC), poly(methyl methacrylate) (PMMA) and sodium alginate (NaALG) were coated with vanadyl phosphate compounds (VOPO4.2H2O), vanadium pentoxide (V2O5), rhodamine B (C28H31N2O3Cl) and ions Co2+ and Cu2+, aiming to the adsorption of hydrogen sulfide gas (H2S). The adsorption tests were through a continuous flow of H2S in a column system (fixed bed reactor) adsorption on a laboratory scale. The techniques used to characterize the adsorbents were Infrared spectroscopy (FTIR), thermogravimetry analysis (TGA), X-ray fluorescence (XRF), the X-ray diffraction (XRD) electron microscopy (SEM). Such work indicates, the results obtained, the adsorbents modified PMMA, PVC and NaALG have a significant adsorptive capacity. The matrix that stood out and had the best adsorption capacity, was to ALG modified Co2+ with a score of 12.79 mg H2S / g matrix

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The constant increase of complexity in computer applications demands the development of more powerful hardware support for them. With processor's operational frequency reaching its limit, the most viable solution is the use of parallelism. Based on parallelism techniques and the progressive growth in the capacity of transistors integration in a single chip is the concept of MPSoCs (Multi-Processor System-on-Chip). MPSoCs will eventually become a cheaper and faster alternative to supercomputers and clusters, and applications developed for these high performance systems will migrate to computers equipped with MP-SoCs containing dozens to hundreds of computation cores. In particular, applications in the area of oil and natural gas exploration are also characterized by the high processing capacity required and would benefit greatly from these high performance systems. This work intends to evaluate a traditional and complex application of the oil and gas industry known as reservoir simulation, developing a solution with integrated computational systems in a single chip, with hundreds of functional unities. For this, as the STORM (MPSoC Directory-Based Platform) platform already has a shared memory model, a new distributed memory model were developed. Also a message passing library has been developed folowing MPI standard

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

O trabalho apresenta um estudo experimental com a utilização de biodiesel, diesel, suas misturas e Gás Natural em uma microturbina à gás. O estudo tem como principal objetivo entender as emissões. O aparato experimental foi construído inteiramente com o propósito de realizar ensaios com gás natural e adaptações na linha de abastecimento foram realizadas para o fornecimento do combustível líquido, não tendo sido realizadas modificações na câmara de combustão. Os experimentos foram realizados para as rotações de 45.000rpm, 50.000rpm, 55.000rpm e 60.000rpm. Pelas dificuldades experimentais encontradas para o entendimento do processo de combustão e emissões geradas, um procedimento complementar para a estimativa das emissões é apresentado, resolvendo-se e estimando-se a composição das emissões através do software ComGas V1.0 para cálculo de combustão no equilibrio. Como contribuição, são apresentados dados experimentais de CO, CO2, O2, temperatura de exaustão dos gases, além das vazões mássicas, vazões molares, caracterização energética dos combustíveis e misturas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEG

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Oil is a hydrocarbon mixture of various sizes, including saturated and aromatic compounds. Natural gas is a mixture of gaseous hydrocarbons and its main component is methane. In our society, the great demand for these fuels requires fast extraction, transportation and refining, increasing the number of accidents that compromise the environment. Oil is a finite resource and it is necessary to reduce the problems related to the question concerning environmental pollution which has encouraged the search for alternative fuel sources in our country. So today we have two major biofuels: ethanol and biodiesel. Concurrently, many studies have been done directed toward the isolation of microorganisms capable of degrading petrochemical industrial wastes, most of them using as a source of isolation soil and water collected in a contaminated environment. Isolation from alternative substrates has emerged as a new strategy that has provided satisfactory results. In this work, we present the leaf-cutter ants of the Attini tribe as a source for the isolation of micro-fungi with the potential for hydrocarbon degradation. These insects have a social way of life and a highly specialized system of intra and interspecific communication, which is based on the recognition of individuals through volatile chemical compounds, the majority hydrocarbons, stored in their exoskeleton. The micro-environment exoskeleton of Attini ants (genus Atta) used in this work proved to be a rich source of microbial biodiversity, as other studies have found. The flotation isolation technique applied here allowed the achievement of 214 micro-fungi, 118 representatives of the dematiaceous fungi group and 96 hyaline filamentous fungi. They were submitted to toluene degradation tests and at least one strain of each genus presented good results, namely Teratosphaeria, Exophiala, Cladosporium, Penicillium, Aspergillus... (Complete abstract click electronic access below)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper is proposed the usage of an Organic Rankine Cycle (ORC) along with waste heat recovery from an inconstant heat source. This method of waste heat recovery with intermittent heat source is part of a technical viability study. This paper also brings up the usage of thermal energy storage as heat source for the ORC. This paper is based on a heat treatment company study in which a natural gas furnace is explored. Data such as mass flow, temperature and specific waste gas heat from this furnace are used through calculations. Calculations are made also based on furnace cycles. This viability study considers a series of working fluids such as ammonia, benzene, R113 and R134a. Results point out that ORC with out thermal storage and using refrigerant fluid ammonia is the best alternative

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work a study of an API 5L X70 steel, which is used in the manufacture of oil and gas pipelines, has been made. This class of steel show high strength and ductility values, and has been increasingly studied due the growing demand of oil and natural gas, which in consequence, increases the needing of new pipelines to transport them. The material studied has been directly taken from a tube provided by TenarisConfab, and a special attention has been given to the fatigue crack growth rate study, which proved that a crack will grow at different rates according to the tube position where it is growing