958 resultados para Frequency-dependent parameters
Resumo:
Effective medium approximations for the frequency-dependent and complex-valued effective stiffness tensors of cracked/ porous rocks with multiple solid constituents are developed on the basis of the T-matrix approach (based on integral equation methods for quasi-static composites), the elastic - viscoelastic correspondence principle, and a unified treatment of the local and global flow mechanisms, which is consistent with the principle of fluid mass conservation. The main advantage of using the T-matrix approach, rather than the first-order approach of Eshelby or the second-order approach of Hudson, is that it produces physically plausible results even when the volume concentrations of inclusions or cavities are no longer small. The new formulae, which operates with an arbitrary homogeneous (anisotropic) reference medium and contains terms of all order in the volume concentrations of solid particles and communicating cavities, take explicitly account of inclusion shape and spatial distribution independently. We show analytically that an expansion of the T-matrix formulae to first order in the volume concentration of cavities (in agreement with the dilute estimate of Eshelby) has the correct dependence on the properties of the saturating fluid, in the sense that it is consistent with the Brown-Korringa relation, when the frequency is sufficiently low. We present numerical results for the (anisotropic) effective viscoelastic properties of a cracked permeable medium with finite storage porosity, indicating that the complete T-matrix formulae (including the higher-order terms) are generally consistent with the Brown-Korringa relation, at least if we assume the spatial distribution of cavities to be the same for all cavity pairs. We have found an efficient way to treat statistical correlations in the shapes and orientations of the communicating cavities, and also obtained a reasonable match between theoretical predictions (based on a dual porosity model for quartz-clay mixtures, involving relatively flat clay-related pores and more rounded quartz-related pores) and laboratory results for the ultrasonic velocity and attenuation spectra of a suite of typical reservoir rocks. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
The length and time scales accessible to optical tweezers make them an ideal tool for the examination of colloidal systems. Embedded high-refractive-index tracer particles in an index-matched hard sphere suspension provide 'handles' within the system to investigate the mechanical behaviour. Passive observations of the motion of a single probe particle give information about the linear response behaviour of the system, which can be linked to the macroscopic frequency-dependent viscous and elastic moduli of the suspension. Separate 'dragging' experiments allow observation of a sample's nonlinear response to an applied stress on a particle-by particle basis. Optical force measurements have given new data about the dynamics of phase transitions and particle interactions; an example in this study is the transition from liquid-like to solid-like behaviour, and the emergence of a yield stress and other effects attributable to nearest-neighbour caging effects. The forces needed to break such cages and the frequency of these cage breaking events are investigated in detail for systems close to the glass transition.
Resumo:
Fig trees are pollinated by fig wasps, which also oviposit in female flowers. The wasp larvae gall and eat developing seeds. Although fig trees benefit from allowing wasps to oviposit, because the wasp offspring disperse pollen, figs must prevent wasps from ovipositing in all flowers, or seed production would cease, and the mutualism would go extinct. In Ficus racemosa, we find that syconia (‘figs’) that have few foundresses (ovipositing wasps) are underexploited in the summer (few seeds, few galls, many empty ovules) and are overexploited in the winter (few seeds, many galls, few empty ovules). Conversely, syconia with many foundresses produce intermediate numbers of galls and seeds, regardless of season. We use experiments to explain these patterns, and thus, to explain how this mutualism is maintained. In the hot summer, wasps suffer short lifespans and therefore fail to oviposit in many flowers. In contrast, cooler temperatures in the winter permit longer wasp lifespans, which in turn allows most flowers to be exploited by the wasps. However, even in winter, only in syconia that happen to have few foundresses are most flowers turned into galls. In syconia with higher numbers of foundresses, interference competition reduces foundress lifespans, which reduces the proportion of flowers that are galled. We further show that syconia encourage the entry of multiple foundresses by delaying ostiole closure. Taken together, these factors allow fig trees to reduce galling in the wasp-benign winter and boost galling (and pollination) in the wasp-stressing summer. Interference competition has been shown to reduce virulence in pathogenic bacteria. Our results show that interference also maintains cooperation in a classic, cooperative symbiosis, thus linking theories of virulence and mutualism. More generally, our results reveal how frequency-dependent population regulation can occur in the fig-wasp mutualism, and how a host species can ‘set the rules of the game’ to ensure mutualistic behavior in its symbionts.
Resumo:
Dynamic rheological techniques can aid the understanding of the factors contributing to ice cream structure, though the data obtained differs from that deduced from destructive techniques. Studies have shown that ice cream systems are both strain- and frequency-dependent. Chocolate ice cream is normally more viscous than the equivalent vanilla ice cream during mix preparation and has more body on freezing. Ice creams were prepared with and without cocoa solids and frequency sweeps were made from 0.1 to 100 Hz at 0.1% strain. With rapidly frozen ice creams, both G' and G" increased in the presence of cocoa solids. Comparison of mixes made with and without low-fat cocoa powder or non-gelatinizing starch demonstrated a similar relationship, with higher apparent viscosities in those mixes containing either cocoa powder or the starch. The results were consistent with the cocoa particles adding to the effect of the fat globules in increasing viscosity.
Resumo:
Flours from wheat varieties of differing bread-making quality were fractionated using a sequential salt precipitation technique. The gluten fractions in the different varieties varied in the proportion of HMW, LMW glutenins and gliadins. Their rheological behaviour was examined using constant strain (2%) small deformation oscillation tests over frequencies ranging from 0.005 to 10 Hz, before and after heating at 90 degrees C. The fractions containing a higher proportion of HMW glutenins were associated with a predominantly elastic character, whereas fractions containing mostly gliadins exhibited a viscous-like behaviour. The frequency dependent rheological behaviour of fractions containing HMW proteins was less susceptible to heat, and their elastic character was maintained after heating, whereas the rheology of intermediate fractions and fractions containing mostly gliadins was more susceptible to heating, indicating a rapid change from viscous to elastic behaviour after heating. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
The crystallisation behaviour of three fat blends, comprising a commercial shortening, a blend of fats with a very low trans fatty acid content ("low-trans") and a blend including hardened rapeseed oil with a relatively high trans fatty acid content ("high-trans") was studied. Molten fats were lowered to a temperature of 31 degrees C and stirred for 0, 15, 30, 45 and 60 min. Samples were removed and their rheological properties studied, using a controlled stress rheometer, employing a frequency sweep procedure. Effects of the progressive crystallisation at 31 degrees C on the melting profile of fat samples removed from the stirred vessel and solidified at -20 degrees C were also studied by differential scanning calorimetry (DSC). The rheological profiles obtained suggested that all of the fats studied had weak viscoelastic "liquid" structures when melted, but these changed to structures perceived by the rheometer as weak viscoelastic "gels" in the early stages of crystallisation (G' (storage modulus) > G" (loss modulus) over most of the measured frequency range). These subsequently developed into weak viscoelastic semi-solids, showing frequency dependent behaviour on further crystallisation. These changes in behaviour were interpreted as changes from a small number of larger crystals "cross-linking" in a liquid matrix to a larger number of smaller crystals packed with a "slip plane" of liquid oil between them. The rate of crystallisation of the three fats was in the order high trans > low-trans > commercial shortening. Changes in the DSC melting profile due to fractionation of triacylglycerols during the crystallisation at 31 degrees C were evident for all three fats. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
There are established methods for calculating optical constants from measurements using a broadband terahertz (THz) source. Applications to ultrafast THz spectroscopy have adopted the key assumption that the THz beam is treated as a normal incidence plane-wave. We show that this assumption results in a frequency-dependent systematic error, which is compounded by distortion of the beam on introduction of the sample.
Apodisation, denoising and system identification techniques for THz transients in the wavelet domain
Resumo:
This work describes the use of a quadratic programming optimization procedure for designing asymmetric apodization windows to de-noise THz transient interferograms and compares these results to those obtained when wavelet signal processing algorithms are adopted. A systems identification technique in the wavelet domain is also proposed for the estimation of the complex insertion loss function. The proposed techniques can enhance the frequency dependent dynamic range of an experiment and should be of particular interest to the THz imaging and tomography community. Future advances in THz sources and detectors are likely to increase the signal-to-noise ratio of the recorded THz transients and high quality apodization techniques will become more important, and may set the limit on the achievable accuracy of the deduced spectrum.
Resumo:
Terahertz (THz) frequency radiation, 0.1 THz to 20 THz, is being investigated for biomedical imaging applications following the introduction of pulsed THz sources that produce picosecond pulses and function at room temperature. Owing to the broadband nature of the radiation, spectral and temporal information is available from radiation that has interacted with a sample; this information is exploited in the development of biomedical imaging tools and sensors. In this work, models to aid interpretation of broadband THz spectra were developed and evaluated. THz radiation lies on the boundary between regions best considered using a deterministic electromagnetic approach and those better analysed using a stochastic approach incorporating quantum mechanical effects, so two computational models to simulate the propagation of THz radiation in an absorbing medium were compared. The first was a thin film analysis and the second a stochastic Monte Carlo model. The Cole–Cole model was used to predict the variation with frequency of the physical properties of the sample and scattering was neglected. The two models were compared with measurements from a highly absorbing water-based phantom. The Monte Carlo model gave a prediction closer to experiment over 0.1 to 3 THz. Knowledge of the frequency-dependent physical properties, including the scattering characteristics, of the absorbing media is necessary. The thin film model is computationally simple to implement but is restricted by the geometry of the sample it can describe. The Monte Carlo framework, despite being initially more complex, provides greater flexibility to investigate more complicated sample geometries.
Resumo:
Modelling the interaction of terahertz(THz) radiation with biological tissueposes many interesting problems. THzradiation is neither obviously described byan electric field distribution or anensemble of photons and biological tissueis an inhomogeneous medium with anelectronic permittivity that is bothspatially and frequency dependent making ita complex system to model.A three-layer system of parallel-sidedslabs has been used as the system throughwhich the passage of THz radiation has beensimulated. Two modelling approaches havebeen developed a thin film matrix model anda Monte Carlo model. The source data foreach of these methods, taken at the sametime as the data recorded to experimentallyverify them, was a THz spectrum that hadpassed though air only.Experimental verification of these twomodels was carried out using athree-layered in vitro phantom. Simulatedtransmission spectrum data was compared toexperimental transmission spectrum datafirst to determine and then to compare theaccuracy of the two methods. Goodagreement was found, with typical resultshaving a correlation coefficient of 0.90for the thin film matrix model and 0.78 forthe Monte Carlo model over the full THzspectrum. Further work is underway toimprove the models above 1 THz.
Resumo:
Using the formalism of the Ruelle response theory, we study how the invariant measure of an Axiom A dynamical system changes as a result of adding noise, and describe how the stochastic perturbation can be used to explore the properties of the underlying deterministic dynamics. We first find the expression for the change in the expectation value of a general observable when a white noise forcing is introduced in the system, both in the additive and in the multiplicative case. We also show that the difference between the expectation value of the power spectrum of an observable in the stochastically perturbed case and of the same observable in the unperturbed case is equal to the variance of the noise times the square of the modulus of the linear susceptibility describing the frequency-dependent response of the system to perturbations with the same spatial patterns as the considered stochastic forcing. This provides a conceptual bridge between the change in the fluctuation properties of the system due to the presence of noise and the response of the unperturbed system to deterministic forcings. Using Kramers-Kronig theory, it is then possible to derive the real and imaginary part of the susceptibility and thus deduce the Green function of the system for any desired observable. We then extend our results to rather general patterns of random forcing, from the case of several white noise forcings, to noise terms with memory, up to the case of a space-time random field. Explicit formulas are provided for each relevant case analysed. As a general result, we find, using an argument of positive-definiteness, that the power spectrum of the stochastically perturbed system is larger at all frequencies than the power spectrum of the unperturbed system. We provide an example of application of our results by considering the spatially extended chaotic Lorenz 96 model. These results clarify the property of stochastic stability of SRB measures in Axiom A flows, provide tools for analysing stochastic parameterisations and related closure ansatz to be implemented in modelling studies, and introduce new ways to study the response of a system to external perturbations. Taking into account the chaotic hypothesis, we expect that our results have practical relevance for a more general class of system than those belonging to Axiom A.
Resumo:
Rennet-induced curd was made from both natural buffalo and cows’ milk, and ultrafiltered cows’ milk (cows’ milk was concentrated such that it had a chemical composition approximately equivalent to that of the buffalo milk). These milk samples were compared on the basis of their rheology, physicochemical characteristics and curd microstructure. The ionic and soluble calcium contents were found to be similar in all milk samples studied. The total and casein bound calcium were higher in concentrated cows’ milk than in standard cows’ milk. Both cows’ milk types were found to have lower total and casein bound calcium than the buffalo milk. This is probably due to concentration of the colloidal part of milk (casein), during the ultrafiltration (UF) process. The rennet coagulation time was similar in UF cows’ and buffalo milk while both were shorter when compared with that of the cows’ milk. The dynamic moduli (G′, G″) values were higher in both the buffalo and UF cows’ milk than in the cows’ milk after 90 min coagulation. The loss tangent, however, was found to be similar in both the UF cows’ and buffalo milk curds and was lower than that observed for the cows’ milk (0.42, 0.42 and 0.48, respectively). The frequency profile of each type of curd was recorded 90 min after the enzyme addition (0.1–10 Hz); all samples were found to be “weak” viscoelastic, frequency dependent gels. The yield stress was also measured 95 min after the enzyme addition, and a higher value was observed in buffalo milk curd when compared with other curd samples made from both the natural cows’ milk and the UF cows’ milk. The cryo-scanning electron and confocal laser scanning micrographs showed that curd structure appeared to be more “dense” and less porous in buffalo milk than cows’ milk even after concentration to equivalent levels of protein/total solids to those found in the buffalo milk.
Resumo:
In this paper, we present multiband optical polarimetric observations of the very-high energy blazar PKS 2155-304 made simultaneously with a HESS/Fermi high-energy campaign in 2008, when the source was found to be in a low state. The intense daily coverage of the data set allowed us to study in detail the temporal evolution of the emission, and we found that the particle acceleration time-scales are decoupled from the changes in the polarimetric properties of the source. We present a model in which the optical polarimetric emission originates at the polarized mm-wave core and propose an explanation for the lack of correlation between the photometric and polarimetric fluxes. The optical emission is consistent with an inhomogeneous synchrotron source in which the large-scale field is locally organized by a shock in which particle acceleration takes place. Finally, we use these optical polarimetric observations of PKS 2155-304 at a low state to propose an origin for the quiescent gamma-ray flux of the object, in an attempt to provide clues for the source of its recently established persistent TeV emission.
Resumo:
The adaptive potential of a species to a changing environment and in disease defence is primarily based on genetic variation. Immune genes, such as genes of the major histocompatibility complex (MHC), may thereby be of particular importance. In marsupials, however, there is very little knowledge about natural levels and functional importance of MHC polymorphism, despite their key role in the mammalian evolution. In a previous study, we discovered remarkable differences in the MHC class II diversity between two species of mouse opossums (Gracilinanus microtarsus, Marmosops incanus) from the Brazilian Atlantic forest, which is one of the most endangered hotspots for biodiversity conservation. Since the main forces in generating MHC diversity are assumed to be pathogens, we investigated in this study gastrointestinal parasite burden and functional associations between the individual MHC constitution and parasite load. We tested two contrasting scenarios, which might explain differences in MHC diversity between species. We predicted that a species with low MHC diversity would either be under relaxed selection pressure by low parasite diversity (`Evolutionary equilibrium` scenario), or there was a recent loss in MHC diversity leading to a lack of resistance alleles and increased parasite burden (`Unbalanced situation` scenario). In both species it became apparent that the MHC class II is functionally important in defence against gastrointestinal helminths, which was shown here for the first time in marsupials. On the population level, parasite diversity did not markedly differ between the two host species. However, we did observe considerable differences in the individual parasite load (parasite prevalence and infection intensity): while M. incanus revealed low MHC DAB diversity and high parasite load, G. microtarsus showed a tenfold higher population wide MHC DAB diversity and lower parasite burden. These results support the second scenario of an unbalanced situation.
Resumo:
Introduction. Coitus in snakes may last up to 28 hours; however, the mechanisms involved are unknown. Aim. To evaluate the relevance of the nitric oxide (NO)-cyclic guanosine monophosphate (cGMP)-phosphodiesterase type 5 (PDE5) system in snake corpus cavernosum reactivity. Methods. Hemipenes were removed from anesthetized South American rattlesnakes (Crotalus durissus terrificus) and studied by light and scanning electronic microscopy. Isolated Crotalus corpora cavernosa (CCC) were dissected from the non-spiny region of the hemipenises, and tissue reactivity was assessed in organ baths. Main Outcome Measures. Cumulative concentration-response curves were constructed for acetylcholine (ACh), sodium nitroprusside (SNP), 5-cyclopropyl-2-[1-(2-fluorobenzyl)-1H-pyrazolo[3,4-b]pyridine-3-yl]pyrimidin-4-ylamine (BAY 41-2272), and tadalafil in CCC precontracted with phenylephrine. Relaxation induced by electrical field stimulation (EFS) was also done in the absence and presence of N omega nitro-L-arginine methyl ester (L-NAME; 100 mu M), 1H-[1, 2, 4] oxadiazolo[4,3-a]quinoxalin-1-one (ODQ; 10 mu M) and tetrodotoxin (TTX; 1 mu M). Results. The hemipenes consisted of two functionally concentric corpora cavernosa, one of them containing radiating bundles of smooth muscle fibers (confirmed by alpha-actin immunostaining). Endothelial and neural nitric oxide synthases were present in the endothelium and neural structures, respectively; whereas soluble guanylate cyclase and PDE5 were expressed in trabecular smooth muscle. ACh and SNP relaxed isolated CCC, with the relaxations being markedly reduced by L-NAME and ODQ, respectively. BAY 41-2272 and tadalafil caused sustained relaxations with potency (pEC(50)) values of 5.84 +/- 0.17 and 5.10 +/- 0.08 (N = 3-4), respectively. In precontracted CCC, EFS caused frequency-dependent relaxations that lasted three times longer than those in mammalian CC. Although these relaxations were almost abolished by either L-NAME or ODQ, they were unaffected by TTX. In contrast, EFS-induced relaxations in marmoset CC were abolished by TTX. Conclusions. Rattlesnake CC relaxation is mediated by the NO-cGMP-PDE5 pathway in a manner similar to mammals. The novel TTX-resistant Na channel identified here may be responsible for the slow response of smooth muscle following nerve stimulation and could explain the extraordinary duration of snake coitus. Capel RO, Monica FZ, Porto M, Barillas S, Muscara MN, Teixeira SA, Arruda AMM, Pissinatti, L, Pissinatti A, Schenka AA, Antunes E, Nahoum C, Cogo JC, de Oliveira MA, and De Nucci G. Role of a novel tetrodotoxin-resistant sodium channel in the nitrergic relaxation of corpus cavernosum from the South American rattlesnake Crotalus durissus terrificus. J Sex Med 2011;8:1616-1625.