965 resultados para Freezing and processing
Resumo:
Modified vaccinia virus Ankara (MVA) is an attenuated double-stranded DNA poxvirus currently developed as a vaccine vector against HIV/AIDS. Profiling of the innate immune responses induced by MVA is essential for the design of vaccine vectors and for anticipating potential adverse interactions between naturally acquired and vaccine-induced immune responses. Here we report on innate immune sensing of MVA and cytokine responses in human THP-1 cells, primary human macrophages and mouse bone marrow-derived macrophages (BMDMs). The innate immune responses elicited by MVA in human macrophages were characterized by a robust chemokine production and a fairly weak pro-inflammatory cytokine response. Analyses of the cytokine production profile of macrophages isolated from knockout mice deficient in Toll-like receptors (TLRs) or in the adapter molecules MyD88 and TRIF revealed a critical role for TLR2, TLR6 and MyD88 in the production of IFNbeta-independent chemokines. MVA induced a marked up-regulation of the expression of RIG-I like receptors (RLR) and the IPS-1 adapter (also known as Cardif, MAVS or VISA). Reduced expression of RIG-I, MDA-5 and IPS-1 by shRNAs indicated that sensing of MVA by RLR and production of IFNbeta and IFNbeta-dependent chemokines was controlled by the MDA-5 and IPS-1 pathway in the macrophage. Crosstalk between TLR2-MyD88 and the NALP3 inflammasome was essential for expression and processing of IL-1beta. Transcription of the Il1b gene was markedly impaired in TLR2(-/-) and MyD88(-/-) BMDM, whereas mature and secreted IL-1beta was massively reduced in NALP3(-/-) BMDMs or in human THP-1 macrophages with reduced expression of NALP3, ASC or caspase-1 by shRNAs. Innate immune sensing of MVA and production of chemokines, IFNbeta and IL-1beta by macrophages is mediated by the TLR2-TLR6-MyD88, MDA-5-IPS-1 and NALP3 inflammasome pathways. Delineation of the host response induced by MVA is critical for improving our understanding of poxvirus antiviral escape mechanisms and for designing new MVA vaccine vectors with improved immunogenicity.
Resumo:
Introduction: The field of Connectomic research is growing rapidly, resulting from methodological advances in structural neuroimaging on many spatial scales. Especially progress in Diffusion MRI data acquisition and processing made available macroscopic structural connectivity maps in vivo through Connectome Mapping Pipelines (Hagmann et al, 2008) into so-called Connectomes (Hagmann 2005, Sporns et al, 2005). They exhibit both spatial and topological information that constrain functional imaging studies and are relevant in their interpretation. The need for a special-purpose software tool for both clinical researchers and neuroscientists to support investigations of such connectome data has grown. Methods: We developed the ConnectomeViewer, a powerful, extensible software tool for visualization and analysis in connectomic research. It uses the novel defined container-like Connectome File Format, specifying networks (GraphML), surfaces (Gifti), volumes (Nifti), track data (TrackVis) and metadata. Usage of Python as programming language allows it to by cross-platform and have access to a multitude of scientific libraries. Results: Using a flexible plugin architecture, it is possible to enhance functionality for specific purposes easily. Following features are already implemented: * Ready usage of libraries, e.g. for complex network analysis (NetworkX) and data plotting (Matplotlib). More brain connectivity measures will be implemented in a future release (Rubinov et al, 2009). * 3D View of networks with node positioning based on corresponding ROI surface patch. Other layouts possible. * Picking functionality to select nodes, select edges, get more node information (ConnectomeWiki), toggle surface representations * Interactive thresholding and modality selection of edge properties using filters * Arbitrary metadata can be stored for networks, thereby allowing e.g. group-based analysis or meta-analysis. * Python Shell for scripting. Application data is exposed and can be modified or used for further post-processing. * Visualization pipelines using filters and modules can be composed with Mayavi (Ramachandran et al, 2008). * Interface to TrackVis to visualize track data. Selected nodes are converted to ROIs for fiber filtering The Connectome Mapping Pipeline (Hagmann et al, 2008) processed 20 healthy subjects into an average Connectome dataset. The Figures show the ConnectomeViewer user interface using this dataset. Connections are shown that occur in all 20 subjects. The dataset is freely available from the homepage (connectomeviewer.org). Conclusions: The ConnectomeViewer is a cross-platform, open-source software tool that provides extensive visualization and analysis capabilities for connectomic research. It has a modular architecture, integrates relevant datatypes and is completely scriptable. Visit www.connectomics.org to get involved as user or developer.
Resumo:
The main sources of coarse aggregate for secondary slip form paving in Southwest Iowa exhibit undesirable "D" cracking. "D" cracking is a discoloration of the concrete caused by fine, hairline cracks. These cracks are caused by the freezing and thawing of moisture inside the coarse aggregate. The cracks are often hour glass shaped, are parallel to each other, and occur along saw joints. The B-4, a typical secondary mix, utilizes 50% fine aggregate and 50% coarse aggregate. It has been proposed that a concrete mix with less coarse aggregate and more fine aggregate might impede this type of deterioration. The Nebraska Standard 47B Mix, a 70% fine aggregate, and 30% coarse aggregate mix, as used by Nebraska Department of Roads produces concrete with ultimate strengths in excess of 4500 psi but because of the higher cost of cement (it is a six bag per cubic yard mix) is not competitive with our present secondary mixes. The sands of Southwest Iowa generally have poorer mortar strengths than the average Iowa Sand. Class V Aggregate also found in Southwest Iowa has a coarser sand fraction, therefore it has a better mortar strength, but exhibits an acidic reaction and therefore must be·used with limestone. This illustrates the need to find a mix for use in Southwest Iowa that possesses adequate strength and satisfactory durability at a low cost. The purpose of this study is to determine a concrete mix with an acceptable cement content which will produce physical properties similar to that of our present secondary paving mixes.
Resumo:
BACKGROUND: Trichoplax adhaerens is the best-known member of the phylum Placozoa, one of the earliest-diverging metazoan phyla. It is a small disk-shaped animal that glides on surfaces in warm oceans to feed on algae. Prior anatomical studies of Trichoplax revealed that it has a simple three-layered organization with four somatic cell types. RESULTS: We reinvestigate the cellular organization of Trichoplax using advanced freezing and microscopy techniques to identify localize and count cells. Six somatic cell types are deployed in stereotyped positions. A thick ventral plate, comprising the majority of the cells, includes ciliated epithelial cells, newly identified lipophil cells packed with large lipid granules, and gland cells. Lipophils project deep into the interior, where they alternate with regularly spaced fiber cells whose branches contact all other cell types, including cells of the dorsal and ventral epithelium. Crystal cells, each containing a birefringent crystal, are arrayed around the rim. Gland cells express several proteins typical of neurosecretory cells, and a subset of them, around the rim, also expresses an FMRFamide-like neuropeptide. CONCLUSIONS: Structural analysis of Trichoplax with significantly improved techniques provides an advance in understanding its cell types and their distributions. We find two previously undetected cell types, lipohil and crystal cells, and an organized body plan in which different cell types are arranged in distinct patterns. The composition of gland cells suggests that they are neurosecretory cells and could control locomotor and feeding behavior.
Resumo:
Pancreatic acinar cells of euthermic, hibernating and arousing individuals of the hazel dormouse Muscardinus avellanarius (Gliridae) have been observed at the electron-microscopic level and analysed by means of ultrastructural morphometry and immunocytochemistry in order to investigate possible fine structural changes of cellular components during periods of strikingly different degrees of metabolic activity. During hibernation, the cisternae of the rough endoplasmic reticulum (RER) flatten assuming a parallel pattern, the Golgi apparatus is extremely reduced and the mitochondria contain many electron-dense particles. The cell nuclei appear irregularly shaped, with deep indentations containing small zymogen granules. They also contain abundant coiled bodies and unusual constituents, such as amorphous bodies and dense granular bodies. Large numbers of zymogen granules occur in all animals. However, the acinar lumina are open and filled with zymogen only in euthermic animals, whereas, in hibernating and arousing individuals, they appear to be closed. Morphometrical analyses indicate that, in pancreatic acinar cells, nuclei and zymogen granules significantly decrease in size from euthermia to hibernation, probably reflecting a drastic decrease of metabolic activities, mainly protein synthesis and processing. In all the studied animals, immunocytochemistry with specific antibodies has revealed an increasing gradient in alpha-amylase content along the RER-Golgi-zymogen granule pathway, reflecting the protein concentration along the secretory pathway. Moreover, during deep hibernation, significantly larger amounts of alpha-amylase accumulate in RER and zymogen granules in comparison to the other seasonal phases analysed. Upon arousal, all cytoplasmic and nuclear constituents restore their euthermic aspect and all morphometrical and immunocytochemical parameters exhibit the euthermic values, thereby indicating a rapid resumption of metabolic activities.
Resumo:
The stability of air bubbles in fresh concrete can have a profound influence of the potential durability of the system, because excessive losses during placement and consolidation can compromise the ability of the mixture to resist freezing and thawing. The stability of air void systems developed by some air entraining admixtures (AEAs) could be affected by the presence of some polycarboxylate-based water reducing admixtures (WRAs). The foam drainage test provides a means of measuring the potential stability of air bubbles in a paste. A barrier to acceptance of the test was that there was little investigation of the correlation with field performance. The work reported here was a limited exercise seeking to observe the stability of a range of currently available AEA/WRA combinations in the foam drainage test; then, to take the best and the worst and observe their stabilities on concrete mixtures in the lab. Based on the data collected, the foam drainage test appears to identify stable combinations of AEA and WRA.
Resumo:
The basic purpose of this study was to determine if an expanded polystyrene insulating board could prevent subgrade freezing and thereby reduce frost heave. The insulating board was placed between a nine inch P. C. concrete slab and a frost-susceptible subgrade. In one section at the test site, selected backfill material was placed under the pavement. The P. C. pavement was later covered by asphalt surfacing. Thermocouples were installed for obtaining temperature recordings at various locations in the surfacing, concrete slab, subgrade and shoulders. This report contains graphs and illustrations showing temperature distributions for two years, as well as profile elevations and the results of moisture tests.
Resumo:
BACKGROUND AND PURPOSE: Knowledge of cerebral blood flow (CBF) alterations in cases of acute stroke could be valuable in the early management of these cases. Among imaging techniques affording evaluation of cerebral perfusion, perfusion CT studies involve sequential acquisition of cerebral CT sections obtained in an axial mode during the IV administration of iodinated contrast material. They are thus very easy to perform in emergency settings. Perfusion CT values of CBF have proved to be accurate in animals, and perfusion CT affords plausible values in humans. The purpose of this study was to validate perfusion CT studies of CBF by comparison with the results provided by stable xenon CT, which have been reported to be accurate, and to evaluate acquisition and processing modalities of CT data, notably the possible deconvolution methods and the selection of the reference artery. METHODS: Twelve stable xenon CT and perfusion CT cerebral examinations were performed within an interval of a few minutes in patients with various cerebrovascular diseases. CBF maps were obtained from perfusion CT data by deconvolution using singular value decomposition and least mean square methods. The CBF were compared with the stable xenon CT results in multiple regions of interest through linear regression analysis and bilateral t tests for matched variables. RESULTS: Linear regression analysis showed good correlation between perfusion CT and stable xenon CT CBF values (singular value decomposition method: R(2) = 0.79, slope = 0.87; least mean square method: R(2) = 0.67, slope = 0.83). Bilateral t tests for matched variables did not identify a significant difference between the two imaging methods (P >.1). Both deconvolution methods were equivalent (P >.1). The choice of the reference artery is a major concern and has a strong influence on the final perfusion CT CBF map. CONCLUSION: Perfusion CT studies of CBF achieved with adequate acquisition parameters and processing lead to accurate and reliable results.
Resumo:
The guava (Psidium guajava L.) cv. Paluma has been cultivated in São Francisco Valley, Northeastern of Brazil, for in natura consumption and processing purposes. In spite of its importance, there are few scientific knowledge regarding guava physiology, nutrition, irrigation and fertigation. The objective of this work was to evaluate the effect of weather conditions and different concentrations of N and K applied by fertigation in foliar contents of reducing sugars, total soluble sugars, starch, sucrose, amino acids, and proteins. The field experiment was carried out at Bebedouro Experimental Field and the biochemical evaluations at the Laboratory of Seed and Plant Physiology, both located at Embrapa Semi-Árido, Petrolina-PE. The doses of 200 g N and 100 g K2O; 400 g N and 200 g K2O; 600 g N and 300 g K2O; and 800 g N and 400 g K2O per plant were applied in an experiment field. The experimental design was totally randomized blocks, with four treatments and five blocks. The weather conditions influenced the plant photosynthesis, which affects the plants metabolism. Guava presented specific responses to N and K fertigation for each parameter evaluated. The weather conditions during the evaluation period influenced guava responses to N and K fertigation.
Resumo:
This thesis was made in Naantali plant of Finnfeeds Finland Oy. In this thesis the main study was in reducing, controlling, measuring and processing odour effluents in various methods. Also are considered legislation, marketing issues and environmental requirements of reducing of odour effluents. The literature review introduces odours complications, legislations and various methods of odour removal. There is also a review of volatile organic compounds detection and measuring methods. The experimental section consists TD-GC-MS-measurements and expansive measurements with electronic nose. Electronic nose is a new solution for recognition and measuring industrial odours. In this thesis the electronic nose was adapted into reliable recognition and measuring method. Measurements with electronic nose was made in betaine factory and main targets were odour removal process and other odours from factory. As a result of experimental work with TD-GC-MS-measurements becomes odour compound of 2-and 3- methylbutanal and dimethyldisulfide, which odour is sweet and fug. Extensive study with electronic nose found many developmental subjects. Odour balance measurements of factory and after calculation made adjustment of odour removal process, over all odour effluent to environment will reduce 25 %.
Resumo:
Forensic laboratories mainly focus on the qualification and the quantitation of the illicit drug under analysis as both aspects are used for judiciary purposes. Therefore, information related to cutting agents (adulterants and diluents) detected in illicit drugs is limited in the forensic literature. This article discusses the type and frequency of adulterants and diluents detected in more than 6000 cocaine specimens and 3000 heroin specimens, confiscated in western Switzerland from 2006 to 2014. The results show a homogeneous and quite unchanging adulteration for heroin, while for cocaine it could be characterised as heterogeneous and relatively dynamic. Furthermore, the results indicate that dilution affects more cocaine than heroin. Therefore, the results provided by this study tend to reveal differences between the respective structures of production or distribution of cocaine and heroin. This research seeks to promote the systematic analysis of cutting agents by forensic laboratories. Collecting and processing data related to the presence of cutting agents in illicit drug specimens produces relevant information to understand and to compare the structure of illicit drug markets.
Resumo:
OBJECTIVE: To assess whether exposure to high altitude induces cognitive dysfunction in young healthy European children and adolescents during acute, short-term exposure to an altitude of 3450 m and in an age-matched European population permanently living at this altitude. STUDY DESIGN: We tested executive function (inhibition, shifting, and working memory), memory (verbal, short-term visuospatial, and verbal episodic memory), and speed processing ability in: (1) 48 healthy nonacclimatized European children and adolescents, 24 hours after arrival at high altitude and 3 months after return to low altitude; (2) 21 matched European subjects permanently living at high altitude; and (3) a matched control group tested twice at low altitude. RESULTS: Short-term hypoxia significantly impaired all but 2 (visuospatial memory and processing speed) of the neuropsychological abilities that were tested. These impairments were even more severe in the children permanently living at high altitude. Three months after return to low altitude, the neuropsychological performances significantly improved and were comparable with those observed in the control group tested only at low altitude. CONCLUSIONS: Acute short-term exposure to an altitude at which major tourist destinations are located induces marked executive and memory deficits in healthy children. These deficits are equally marked or more severe in children permanently living at high altitude and are expected to impair their learning abilities.
Resumo:
Many Gram-negative, cold-adapted bacteria from the Antarctic environment produce large amounts of extracellular matter with potential biotechnological applications. Transmission electron microscopy (TEM) analysis after high-pressure freezing and freeze substitution (HPF-FS) showed that this extracellular matter is structurally complex, appearing around cells as a netlike mesh, and composed of an exopolymeric substance (EPS) containing large numbers of outer membrane vesicles (OMVs). Isolation, purification and protein profiling via 1D SDS-PAGE confirmed the outer membrane origin of these Antarctic bacteria OMVs. In an initial attempt to elucidate the role of OMVs in cold-adapted strains of Gram-negative bacteria, a proteomic analysis demonstrated that they were highly enriched in outer membrane proteins and periplasmic proteins associated with nutrient processing and transport, suggesting that the OMVs may be involved in nutrient sensing and bacterial survival. OMVs from Gram-negative bacteria are known to play a role in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. A structural study of Shewanella vesiculosa M7T using TEM and Cryo-TEM revealed that this Antarctic Gram-negative bacterium naturally releases conventional one-bilayer OMVs, together with a more complex type of OMV, previously undescribed, which on formation drags along inner membrane and cytoplasmic content and can therefore also entrap DNA.
Resumo:
Many Gram-negative, cold-adapted bacteria from the Antarctic environment produce large amounts of extracellular matter with potential biotechnological applications. Transmission electron microscopy (TEM) analysis after high-pressure freezing and freeze substitution (HPF-FS) showed that this extracellular matter is structurally complex, appearing around cells as a netlike mesh, and composed of an exopolymeric substance (EPS) containing large numbers of outer membrane vesicles (OMVs). Isolation, purification and protein profiling via 1D SDS-PAGE confirmed the outer membrane origin of these Antarctic bacteria OMVs. In an initial attempt to elucidate the role of OMVs in cold-adapted strains of Gram-negative bacteria, a proteomic analysis demonstrated that they were highly enriched in outer membrane proteins and periplasmic proteins associated with nutrient processing and transport, suggesting that the OMVs may be involved in nutrient sensing and bacterial survival. OMVs from Gram-negative bacteria are known to play a role in lateral DNA transfer, but the presence of DNA in these vesicles has remained difficult to explain. A structural study of Shewanella vesiculosa M7T using TEM and Cryo-TEM revealed that this Antarctic Gram-negative bacterium naturally releases conventional one-bilayer OMVs, together with a more complex type of OMV, previously undescribed, which on formation drags along inner membrane and cytoplasmic content and can therefore also entrap DNA.
Resumo:
Neural signal processing is a discipline within neuroengineering. This interdisciplinary approach combines principles from machine learning, signal processing theory, and computational neuroscience applied to problems in basic and clinical neuroscience. The ultimate goal of neuroengineering is a technological revolution, where machines would interact in real time with the brain. Machines and brains could interface, enabling normal function in cases of injury or disease, brain monitoring, and/or medical rehabilitation of brain disorders. Much current research in neuroengineering is focused on understanding the coding and processing of information in the sensory and motor systems, quantifying how this processing is altered in the pathological state, and how it can be manipulated through interactions with artificial devices including brain–computer interfaces and neuroprosthetics.