888 resultados para Fractional algorithms
Resumo:
The development of high spatial resolution airborne and spaceborne sensors has improved the capability of ground-based data collection in the fields of agriculture, geography, geology, mineral identification, detection [2, 3], and classification [4–8]. The signal read by the sensor from a given spatial element of resolution and at a given spectral band is a mixing of components originated by the constituent substances, termed endmembers, located at that element of resolution. This chapter addresses hyperspectral unmixing, which is the decomposition of the pixel spectra into a collection of constituent spectra, or spectral signatures, and their corresponding fractional abundances indicating the proportion of each endmember present in the pixel [9, 10]. Depending on the mixing scales at each pixel, the observed mixture is either linear or nonlinear [11, 12]. The linear mixing model holds when the mixing scale is macroscopic [13]. The nonlinear model holds when the mixing scale is microscopic (i.e., intimate mixtures) [14, 15]. The linear model assumes negligible interaction among distinct endmembers [16, 17]. The nonlinear model assumes that incident solar radiation is scattered by the scene through multiple bounces involving several endmembers [18]. Under the linear mixing model and assuming that the number of endmembers and their spectral signatures are known, hyperspectral unmixing is a linear problem, which can be addressed, for example, under the maximum likelihood setup [19], the constrained least-squares approach [20], the spectral signature matching [21], the spectral angle mapper [22], and the subspace projection methods [20, 23, 24]. Orthogonal subspace projection [23] reduces the data dimensionality, suppresses undesired spectral signatures, and detects the presence of a spectral signature of interest. The basic concept is to project each pixel onto a subspace that is orthogonal to the undesired signatures. As shown in Settle [19], the orthogonal subspace projection technique is equivalent to the maximum likelihood estimator. This projection technique was extended by three unconstrained least-squares approaches [24] (signature space orthogonal projection, oblique subspace projection, target signature space orthogonal projection). Other works using maximum a posteriori probability (MAP) framework [25] and projection pursuit [26, 27] have also been applied to hyperspectral data. In most cases the number of endmembers and their signatures are not known. Independent component analysis (ICA) is an unsupervised source separation process that has been applied with success to blind source separation, to feature extraction, and to unsupervised recognition [28, 29]. ICA consists in finding a linear decomposition of observed data yielding statistically independent components. Given that hyperspectral data are, in given circumstances, linear mixtures, ICA comes to mind as a possible tool to unmix this class of data. In fact, the application of ICA to hyperspectral data has been proposed in reference 30, where endmember signatures are treated as sources and the mixing matrix is composed by the abundance fractions, and in references 9, 25, and 31–38, where sources are the abundance fractions of each endmember. In the first approach, we face two problems: (1) The number of samples are limited to the number of channels and (2) the process of pixel selection, playing the role of mixed sources, is not straightforward. In the second approach, ICA is based on the assumption of mutually independent sources, which is not the case of hyperspectral data, since the sum of the abundance fractions is constant, implying dependence among abundances. This dependence compromises ICA applicability to hyperspectral images. In addition, hyperspectral data are immersed in noise, which degrades the ICA performance. IFA [39] was introduced as a method for recovering independent hidden sources from their observed noisy mixtures. IFA implements two steps. First, source densities and noise covariance are estimated from the observed data by maximum likelihood. Second, sources are reconstructed by an optimal nonlinear estimator. Although IFA is a well-suited technique to unmix independent sources under noisy observations, the dependence among abundance fractions in hyperspectral imagery compromises, as in the ICA case, the IFA performance. Considering the linear mixing model, hyperspectral observations are in a simplex whose vertices correspond to the endmembers. Several approaches [40–43] have exploited this geometric feature of hyperspectral mixtures [42]. Minimum volume transform (MVT) algorithm [43] determines the simplex of minimum volume containing the data. The MVT-type approaches are complex from the computational point of view. Usually, these algorithms first find the convex hull defined by the observed data and then fit a minimum volume simplex to it. Aiming at a lower computational complexity, some algorithms such as the vertex component analysis (VCA) [44], the pixel purity index (PPI) [42], and the N-FINDR [45] still find the minimum volume simplex containing the data cloud, but they assume the presence in the data of at least one pure pixel of each endmember. This is a strong requisite that may not hold in some data sets. In any case, these algorithms find the set of most pure pixels in the data. Hyperspectral sensors collects spatial images over many narrow contiguous bands, yielding large amounts of data. For this reason, very often, the processing of hyperspectral data, included unmixing, is preceded by a dimensionality reduction step to reduce computational complexity and to improve the signal-to-noise ratio (SNR). Principal component analysis (PCA) [46], maximum noise fraction (MNF) [47], and singular value decomposition (SVD) [48] are three well-known projection techniques widely used in remote sensing in general and in unmixing in particular. The newly introduced method [49] exploits the structure of hyperspectral mixtures, namely the fact that spectral vectors are nonnegative. The computational complexity associated with these techniques is an obstacle to real-time implementations. To overcome this problem, band selection [50] and non-statistical [51] algorithms have been introduced. This chapter addresses hyperspectral data source dependence and its impact on ICA and IFA performances. The study consider simulated and real data and is based on mutual information minimization. Hyperspectral observations are described by a generative model. This model takes into account the degradation mechanisms normally found in hyperspectral applications—namely, signature variability [52–54], abundance constraints, topography modulation, and system noise. The computation of mutual information is based on fitting mixtures of Gaussians (MOG) to data. The MOG parameters (number of components, means, covariances, and weights) are inferred using the minimum description length (MDL) based algorithm [55]. We study the behavior of the mutual information as a function of the unmixing matrix. The conclusion is that the unmixing matrix minimizing the mutual information might be very far from the true one. Nevertheless, some abundance fractions might be well separated, mainly in the presence of strong signature variability, a large number of endmembers, and high SNR. We end this chapter by sketching a new methodology to blindly unmix hyperspectral data, where abundance fractions are modeled as a mixture of Dirichlet sources. This model enforces positivity and constant sum sources (full additivity) constraints. The mixing matrix is inferred by an expectation-maximization (EM)-type algorithm. This approach is in the vein of references 39 and 56, replacing independent sources represented by MOG with mixture of Dirichlet sources. Compared with the geometric-based approaches, the advantage of this model is that there is no need to have pure pixels in the observations. The chapter is organized as follows. Section 6.2 presents a spectral radiance model and formulates the spectral unmixing as a linear problem accounting for abundance constraints, signature variability, topography modulation, and system noise. Section 6.3 presents a brief resume of ICA and IFA algorithms. Section 6.4 illustrates the performance of IFA and of some well-known ICA algorithms with experimental data. Section 6.5 studies the ICA and IFA limitations in unmixing hyperspectral data. Section 6.6 presents results of ICA based on real data. Section 6.7 describes the new blind unmixing scheme and some illustrative examples. Section 6.8 concludes with some remarks.
Resumo:
Thesis submitted in the fulfillment of the requirements for the Degree of Master in Biomedical Engineering
Resumo:
Fractional dynamics is a growing topic in theoretical and experimental scientific research. A classical problem is the initialization required by fractional operators. While the problem is clear from the mathematical point of view, it constitutes a challenge in applied sciences. This paper addresses the problem of initialization and its effect upon dynamical system simulation when adopting numerical approximations. The results are compatible with system dynamics and clarify the formulation of adequate values for the initial conditions in numerical simulations.
Resumo:
The local fractional Poisson equations in two independent variables that appear in mathematical physics involving the local fractional derivatives are investigated in this paper. The approximate solutions with the nondifferentiable functions are obtained by using the local fractional variational iteration method.
Resumo:
This paper formulates a novel expression for entropy inspired in the properties of Fractional Calculus. The characteristics of the generalized fractional entropy are tested both in standard probability distributions and real world data series. The results reveal that tuning the fractional order allow an high sensitivity to the signal evolution, which is useful in describing the dynamics of complex systems. The concepts are also extended to relative distances and tested with several sets of data, confirming the goodness of the generalization.
Resumo:
This paper studies several topics related with the concept of “fractional” that are not directly related with Fractional Calculus, but can help the reader in pursuit new research directions. We introduce the concept of non-integer positional number systems, fractional sums, fractional powers of a square matrix, tolerant computing and FracSets, negative probabilities, fractional delay discrete-time linear systems, and fractional Fourier transform.
Resumo:
We propose a fractional model for computer virus propagation. The model includes the interaction between computers and removable devices. We simulate numerically the model for distinct values of the order of the fractional derivative and for two sets of initial conditions adopted in the literature. We conclude that fractional order systems reveal richer dynamics than the classical integer order counterpart. Therefore, fractional dynamics leads to time responses with super-fast transients and super-slow evolutions towards the steady-state, effects not easily captured by the integer order models.
Resumo:
This paper starts by introducing the Grünwald–Letnikov derivative, the Riesz potential and the problem of generalizing the Laplacian. Based on these ideas, the generalizations of the Laplacian for 1D and 2D cases are studied. It is presented as a fractional version of the Cauchy–Riemann conditions and, finally, it is discussed with the n-dimensional Laplacian.
Resumo:
While fractional calculus (FC) is as old as integer calculus, its application has been mainly restricted to mathematics. However, many real systems are better described using FC equations than with integer models. FC is a suitable tool for describing systems characterised by their fractal nature, long-term memory and chaotic behaviour. It is a promising methodology for failure analysis and modelling, since the behaviour of a failing system depends on factors that increase the model’s complexity. This paper explores the proficiency of FC in modelling complex behaviour by tuning only a few parameters. This work proposes a novel two-step strategy for diagnosis, first modelling common failure conditions and, second, by comparing these models with real machine signals and using the difference to feed a computational classifier. Our proposal is validated using an electrical motor coupled with a mechanical gear reducer.
Resumo:
In this paper, the fractional Fourier transform (FrFT) is applied to the spectral bands of two component mixture containing oxfendazole and oxyclozanide to provide the multicomponent quantitative prediction of the related substances. With this aim in mind, the modulus of FrFT spectral bands are processed by the continuous Mexican Hat family of wavelets, being denoted by MEXH-CWT-MOFrFT. Four modulus sets are obtained for the parameter a of the FrFT going from 0.6 up to 0.9 in order to compare their effects upon the spectral and quantitative resolutions. Four linear regression plots for each substance were obtained by measuring the MEXH-CWT-MOFrFT amplitudes in the application of the MEXH family to the modulus of the FrFT. This new combined powerful tool is validated by analyzing the artificial samples of the related drugs, and it is applied to the quality control of the commercial veterinary samples.
Resumo:
This paper addresses limit cycles and signal propagation in dynamical systems with backlash. The study follows the describing function (DF) method for approximate analysis of nonlinearities and generalizes it in the perspective of the fractional calculus. The concept of fractional order describing function (FDF) is illustrated and the results for several numerical experiments are analysed. FDF leads to a novel viewpoint for limit cycle signal propagation as time-space waves within system structure.
Resumo:
Gottfried Leibniz generalized the derivation and integration, extending the operators from integer up to real, or even complex, orders. It is presently recognized that the resulting models capture long term memory effects difficult to describe by classical tools. Leon Chua generalized the set of lumped electrical elements that provide the building blocks in mathematical models. His proposal of the memristor and of higher order elements broadened the scope of variables and relationships embedded in the development of models. This paper follows the two directions and proposes a new logical step, by generalizing the concept of junction. Classical junctions interconnect system elements using simple algebraic restrictions. Nevertheless, this simplistic approach may be misleading in the presence of unexpected dynamical phenomena and requires including additional “parasitic” elements. The novel γ-junction includes, as special cases, the standard series and parallel connections and allows a new degree of freedom when building models. The proposal motivates the search for experimental and real world manifestations of the abstract conjectures.
Resumo:
This paper applies Pseudo Phase Plane (PPP) and Fractional Calculus (FC) mathematical tools for modeling world economies. A challenging global rivalry among the largest international economies began in the early 1970s, when the post-war prosperity declined. It went on, up to now. If some worrying threatens may exist actually in terms of possible ambitious military aggression, invasion, or hegemony, countries’ PPP relative positions can tell something on the current global peaceful equilibrium. A global political downturn of the USA on global hegemony in favor of Asian partners is possible, but can still be not accomplished in the next decades. If the 1973 oil chock has represented the beginning of a long-run recession, the PPP analysis of the last four decades (1972–2012) does not conclude for other partners’ global dominance (Russian, Brazil, Japan, and Germany) in reaching high degrees of similarity with the most developed world countries. The synergies of the proposed mathematical tools lead to a better understanding of the dynamics underlying world economies and point towards the estimation of future states based on the memory of each time series.
Resumo:
Discussions under this title were held during a special session in frames of the International Conference “Fractional Differentiation and Applications” (ICFDA ’14) held in Catania (Italy), 23-25 June 2014, see details at http://www.icfda14.dieei.unict.it/. Along with the presentations made during this session, we include here some contributions by the participants sent afterwards and also by few colleagues planning but failed to attend. The intention of this special session was to continue the useful traditions from the first conferences on the Fractional Calculus (FC) topics, to pose open problems, challenging hypotheses and questions “where to go”, to discuss them and try to find ways to resolve.