277 resultados para Foredeep turbidites
Resumo:
An integrated stratigraphic analysis has been made of the Tarcău Nappe (Moldavidian Domain, Eastern Romanian Carpathians), coupled with a geochemical study of organic-rich beds. Two Main Sequence Boundaries (Early Oligocene and near to the Oligocene–Aquitanian boundary, respectively) divide the sedimentary record into three depositional sequences. The sedimentation occurred in the central area of a basin supplied by different and opposite sources. The high amount of siliciclastics at the beginning of the Miocene marks the activation of the “foredeep stage”. The successions studied are younger than previously thought and they more accurately date the deformation of the different Miocene phases affecting the Moldavidian Basin. The intervals with black shales identified are related to two main separate anoxic episodes with an age not older than Late Rupelian and not before Late Chattian. The most important organic-rich beds correspond to the Lower Menilites, Bituminous Marls and Lower Dysodilic Shales Members (Interval 2). These constitute a good potential source rock for petroleum, with homogeneous Type II oil-prone organic matter, highly lipidic and thermally immature. The deposition of black shales has been interpreted as occurring within a deep, periodically isolated and tectonically controlled basin.
Resumo:
The sedimentary record of the Tarcău and Vrancea Nappes, belonging to the flysch accretionary zone of the Eastern Carpathians (Eastern Carpathian Outer Flysch), registered Cretaceous-Miocene events during the evolution of the Moldavidian Basin. Our biostratigraphic data indicate that the deposits studied are younger than previously reported. The comparison of sedimentary record studied with the Late Cretaceous-Early Miocene global eustatic curve indicates that eustatic factor played a secondary role, after the tectonic one. Four main stages of different processes influenced by tectonics are recognized in the sedimentary record: (1) Campanian-Maastrichtian-earliest Paleocene; (2) latest Ypresian-Lutetian; (3) late Chattian-earliest Aquitanian, and (4) late Aquitanian-early Burdigalian. The late Chattian- earliest Aquitanian and late Aquitanian-early Burdigalian records indicate a high tectonic influence. The first event was related to the foredeep stage of the sedimentary domain studied, and the second one to the deformation stage of the same domain. The sedimentary records of tectonic influence recognized during these stages are useful tools for geodynamic reconstructions. The stratigraphic correlation of Tarcău and Vrancea sedimentary records are used
Resumo:
A synthetic study has been made to identify main tectono-sedimentary and geodynamic events in central-western Tethys. For this, an interdisciplinary analysis has been performed on successions belonging to tectonic units derived from Betic-Maghrebian-southern Apennine “Flysch basin” domain. The stratigraphic records of the internal, external, and mixed successions deposited in lateral basins of different chains show very similar characters, especially regarding: (a) lithostratigraphy and ages; (b) kind and provenance of supplies (immature and supermature petrofacies from internal and external margins, respectively); (c) presence of “mixed successions” (composed of alternating internal and external petrofacies) attesting to clear palaeogeographic relationships between opposite depositional systems; and (d) timing of the deformation. In addition, specific lithofacies reveal correspondence with similar sedimentary events, such as: (1) very thick silicoclastic supply concentrated in restricted time ranges indicating the main deformational phases in the margin/basin systems; (2) levels rich in black-shales, glauconian, siliceous-producers, and volcaniclastic intercalations, widespread in the studied successions and linked to particular events at the Tethyan scale (anoxic periods, starvation-upwelling, acid-intermediate penecontemporaneous volcanic activity, respectively). Tectonic influence has also been recorded by means of unconformities and tectofacies (such as turbidites, slumps, or olisthostromes, etc.), being correlated with the main deformational phases. Similar stratigraphic and tectonic events have also been found in the Calvana unit of Val Marecchia nappe (Ligurides, northern Apennine). Correlations of stratigraphic and tectonic events support the proposal of an evolutionary geodynamic model involving the presence of a “Mesomediterranean microplate” in intermediate position during Africa-Europe convergence. The closure of central-western Tethys occasioned the Betic-Maghrebian-southern Apennine oceanic branch deformation and the birth of perimediterranean chains during middle-late Miocene.
Resumo:
The Early Miocene Bisciaro Fm., a marly limestone succession cropping out widely in the Umbria–Romagna–Marche Apennines, is characterized by a high amount of volcaniclastic content, characterizing this unit as a peculiar event of the Adria Plate margin. Because of this volcaniclastic event, also recognizable in different sectors of the central-western Mediterranean chains, this formation is proposed as a “marker” for the geodynamic evolution of the area. In the Bisciaro Fm., the volcaniclastic supply starts with the “Raffaello” bed (Earliest Aquitanian) that marks the base of the formation and ends in the lower portion of the Schlier Fm. (Late Burdigalian–Langhian p.p.). Forty-one studied successions allowed the recognition of three main petrofacies: (1) Pyroclastic Deposits (volcanic materials more than 90 %) including the sub-petrofacies 1A, Vitroclastic/crystallo-vitroclastic tuffs; 1B, Bentonitic deposits; and 1C, Ocraceous and blackish layers; (2) Resedimented Syn-Eruptive Volcanogenic Deposits (volcanic material 30–90 %) including the sub-petrofacies 2A, High-density volcanogenic turbidites; 2B, Low-density volcanogenic turbidites; 2C, Crystal-rich volcanogenic deposits; and 2D, Glauconitic-rich volcaniclastites; (3) Mixing of Volcaniclastic Sediments with Marine Deposits (volcanic material 5–30 %, mixed with marine sediments: marls, calcareous marls, and marly limestones). Coeval volcaniclastic deposits recognizable in different tectonic units of the Apennines, Maghrebian, and Betic Chains show petrofacies and chemical–geochemical features related to a similar calc-alkaline magmatism. The characterization of this event led to the hypothesis of a co-genetic relationship between volcanic activity centres (primary volcanic systems) and depositional basins (depositional processes) in the Early Miocene palaeogeographic and palaeotectonic evolution of the central-western Mediterranean region. The results support the proposal of a geodynamic model of this area that considers previously proposed interpretations.
Resumo:
The Pliocene and Pleistocene deposits recovered at Site 976 from the northwestern Alboran Sea at the Málaga base-of-slope include five main sedimentary facies: hemipelagic, turbidite, homogeneous gravity-flow, contourite, and debris-flow facies. The thickness and vertical distribution of these facies into lithostratigraphic Units I, II, and III show that the turbidites and hemipelagic facies are the dominant associations. The Pliocene and Pleistocene depositional history has been divided into three sedimentary stages: Stage I of early Pliocene age, in which hemipelagic and low-energy turbidites were the dominant processes; Stage II of early Pleistocene/late Pliocene age, in which the dominant processes were the turbidity currents interrupted by short episodes of other gravity flows (debris-flows and homogeneous gravity-flow facies) and bottom currents; and Stage III of Pleistocene age, in which both hemipelagic and low-energy gravity-flow processes occurred. The sedimentation during these three stages was controlled mainly by sea-level changes and also by the sediment supply that caused rapid terrigenous sedimentation variations from a proximal source represented by the Fuengirola Canyon.
Resumo:
Bulk sediment accumulation rates and carbonate and carbonate-free accumulation rates corrected for tectonic tilting have been calculated for Leg 78A sediments. These rates are uniformly low, ranging from 0.1 to 6.8 g/(cm**2 x 10**3 yr.), reflecting the pelagic-hemipelagic nature of all the sediments drilled in the northern Lesser Antilles forearc. Rates calculated for Sites 541 and 542 [0.6-6.8 g/(cm**2 x 10**3 yr.)], located on the lower slope of the accretionary prism, are significantly greater than the Neogene rates calculated for oceanic reference Site 543 [0.1-2.4 g/(cm**2 x 10**3)]. This difference could be the result of (1) tectonic thickening of accretionary prism sediments due to folding, small-scale faulting, and layer-parallel shortening; (2) deposition in shallower water farther above the CCD (carbonate compensation depth) resulting in preservation of a greater percentage of calcareous microfossils; or (3) a greater percentage of foraminiferal sediment gravity flows. Terrigenous turbidites are not documented in the Leg 78A area because of (1) great distance from South American sources; (2) damming effects of east-west trending tectonic elements; and (3) location on the Tiburon Rise (Site 543). This lack of terrigenous material, characteristic of intraoceanic convergent margins, suggests that published sedimentation models for active continental convergent margins with abundant terrigenous influxes are not applicable to intraoceanic convergent margin settings.
Resumo:
Site 986 was drilled to 965 meters below seafloor (mbsf) on the western Svalbard margin to record the onset of glaciations and to date and document the glacial evolution in the Svalbard-Barents Sea region during the Pliocene-Pleistocene. In this paper, results of sedimentological analyses are discussed in light of seismic stratigraphy and new age determinations. The latter were difficult to obtain in the glacial deposits, and datums are sparse. Through combined paleomagnetic data, biostratigraphy, and Sr isotopes, however, an overall chronology for the main evolutionary steps is suggested. The cored sequence at Site 986 is younger than 2.6 Ma, and the lower 60 m of the section contains no evidence of a major glacial influence. An initial glaciation is interpreted to have occurred at ~2.3 Ma, resulting in increased sand deposition from debris flows at Site 986 and forming a prominent seismic reflector, R7. However, glaciers probably did not reach the shelf break until ~1.6-1.7 Ma (Reflector R6), after which the depositional environment was dominated by diamictic debris flows. A gradual change in source area from the Barents Sea to Svalbard is recorded primarily by changes in carbonate and smectite content, ~355 mbsf (Reflector R5), at an interpolated age of 1.4-1.5 Ma. During the last ~1 m.y., Site 986 has undergone more distal deposition as the main depocenters have shifted laterally. This has resulted in less frequent debris flows and more turbidites and hemipelagic deposits, with a slight fining upward of the cored sediments.
Resumo:
During the ARCTIC '91-Expedition with RV 'Polarstern', several Multicorer and Kastenlot-cores were recovered along a profile crossing the eastern part of the Arctic Ocean. The investigated cores consist mainly of clayey-silty sediments, and some units with a higher sand content. In this thesis, detailed sedimentological and organic-geochemical investigations were performed. In part, the near surface sediments were AMS-14C dated making it possible to Interpret the results of the organic-geochemical investigations in terms of climatic changes (isotopic stage 2 to the Holocene). The more or less absence of foraminifers within the long cores prevented the development of an oxygen isotope stratigraphy. Only the results of core PS2174-5 from the Amundsen-Basin could be discussed in terms of the climatic change that could be dated back to oxygen isotope stage 7. Detailed organic-geochemical investigations in the central Arctic Ocean are rare. Therefore, several different organic-geochemical methods were used to obtain a wide range of data for the Interpretation of the organic matter. The high organic carbon content of the surface sediments is derived from a high input of terrigenous organic matter. The terrigenous organic material is most likely entrained within the sea-ice On the Siberian shelves and released during ice-drift over the Arctic Ocean. Other factors such as iceberg-transport and turbidites are also responsible for the high input of terrigenous organic matter. Due to the more or less closed sea-ice Cover, the Arctic Ocean is known as a low productivity system. A model shows, that only 2 % of the organic matter in central Arctic Ocean sediments is of a marine origin. The influence of the West-Spitsbergen current increases the marine organic matter content to 16 %. Short chain n-alkanes (C17 and C19) can be used as a marker of marine productivity in the Arctic Ocean. Higher contents of short chain n-alkanes exist in surface sediments of the Lomonosov-Ridge and the Makarov-Basin, indicating a higher marine productivity caused by a reduced sea-ice Cover. The Beaufort-Gyre and Transpolar-Drift drift Patterns could be responsible for the lower sea-ice distribution in this region. The sediments of Stage 2 and Stage 3 in this region are also dominated by a higher content of short chain-nalkanes indicating a comparable ice-drift Pattern during that time. The content and composition of organic carbon in the sediments of core PS2174-5 reflect glaciallinterglacial changes. Interglacial stages 7 and 5e show a low organic carbon content (C 0,5 %) and, as indicated by high hydrogen-indices, low CIN-ratios, higher content of n-alkanes (C17 and C19) and a higher opal content, a higher marine productivity. In the Holocene, a high content of foraminifers, coccoliths, ostracodes, and sponge spicules indicate higher surface-water productivity. Nevertheless, the low hydrogenindices reveal a high content of terrigenous organic matter. Therefore, the Holocene seems to be different from interglacials 7 and 5e. During the glacial periods (stages 6, upper 5, and 4), TOC-values are significantly higher (0.7 to 1.3 %). In addition, low hydrogen-indices, high CIN-ratios, low short chain n-alkanes and opal contents provide evidence for a higher input of terrigenous organic matter and reduced marine productivity. The high lignin content in core sections with high TOC-contents, substantiates the high input of terrigenous organic matter. Changes in the content and composition of the organic carbon is believed to vary with the fluctuations in sea-level and sea-ice coverage.
Resumo:
The capillary-pressure characteristics of 22 samples of lithified post-Paleozoic Indian-Ocean carbonates were compared to published data from older carbonate rocks (lower Paleozoic Hunton Group of Texas and Oklahoma). The Indian-Ocean samples are considerably more porous than are the Paleozoic samples, yet all of the Indian-Ocean samples fit readily into a descriptive petrofacies scheme previously established for the Hunton Group. The Indian-Ocean samples may be assigned to four petrophysical facies (petrofacies) based on the shapes of their capillary-pressure curves, their pore-throat-size distributions, their estimated recovery efficiency values (for nonwetting fluids), and the visual characteristics of their pore systems, as observed with a scanning-electron microscope. Petrofacies assignments for the Indian-Ocean samples are as follows. Petrofacies I includes six samples collected from the coarse basal portions of event deposits (primarily turbidites). These samples have large throats, leptokurtic throat-size distributions, low- to moderate recovery efficiency values, concave cumulative-intrusion capillary-pressure curves, and high porosity values. Petrofacies II includes two sedimentologically dissimilar samples that have medium-size throats, platykurtic throat-size distributions, moderate- to-high recovery efficiency values, gently sloping cumulative-intrusion capillary-pressure curves, and high porosity values. Petrofacies III includes two polymictic sandstones and a skeletal packstone that have small throats, polymodal throat-size distributions, moderate recovery efficiency values, gently sloping cumulative-intrusion capillary-pressure curves, and high porosity values. Petrofacies IV includes 11 samples, mostly recrystallized neritic carbonates, that have small throats, leptokurtic throat-size distributions, high recovery efficiency values, convex cumulative-intrusion capillary-pressure curves, and low porosity values. Comparison of petrofacies assignment to core-, thin-section-, and smear-slide data, and to inferred depositional setting, suggests that pore systems in most samples from Holes 765C and 766A result from primary depositional features, whereas pore systems in samples from Hole 761C and one sample from Hole 765C have been strongly influenced by diagenetic processes. For Hole 761C, prediction of petrophysical parameters should be most successful if based on diagenetic facies patterns. By contrast, the distribution of favorable reservoir facies and of permeability barriers in less highly altered rocks collected from Holes 765C and 766A is related to depositional patterns. Recovery efficiency is inversely related to both porosity and median throat size for the present data set. This relationship is similar to that observed for carbonates of the lower Paleozoic Hunton Group and the Ordovician Ellenburger dolomite, but opposite of that observed for some other ancient carbonates. The coarse deposits of the massive basal units of turbidites are petrophysically distinct and form a coherent petrophysical group (Petrofacies I) with substantial reservoir potential. Two samples assigned to Petrofacies I have extremely large throats (median throat size at least 4 ?m, and at least six times that of any other sample) and therefore high permeability values. These two samples come from thin, coarse turbidites that lack or have poorly developed fine divisions and are interpreted to have been deposited on channeled suprafan lobes in a proximal mid-fan setting. The restriction of extremely high permeability values to a single depositional facies suggests that careful facies mapping of deep-sea fans in a deliberate search for such coarse turbidites could dramatically enhance the success of exploration for aquifers or hydrocarbon reservoirs. Such reservoirs should have substantial vertical heterogeneity. They should have high lateral permeability values but low vertical permeability values, and reservoir sections should include numerous thin units having widely differing petrophysical characteristics.
Resumo:
Albian turbidites and intercalated shales were cored from ~1145 to 1700 meters below seafloor at Site 1276 in the Newfoundland Basin. Strata at this level dip ~2.5° seaward (toward an azimuth of ~130°) based on seismic profiles. In contrast, beds dip an average of ~10° in the cores. This higher apparent dip is the sum of the ~2.5° seaward dip and a measured hole deviation of 7.43°, which must be essentially in the same seaward direction. Using the maximum dip direction in the cores as a reference direction, paleocurrents were measured from 11 current-ripple foresets and 11 vector means of grain fabric in planar-laminated sandstones. Five of the planar-laminated sandstone samples have a grain imbrication 8°, permitting specification of a unique flow direction rather than just the line-of-motion of the current. Both ripples and grain fabric point to unconfined flow toward the north-northeast. There is considerable spread in the data so that some paleoflow indicators point toward the northwest, whereas others point southeast. Nevertheless, the overall pattern of paleoflow suggests a source for the turbidity currents on the southeastern Grand Banks, likely from the long-emergent Avalon Uplift in that area. On average, turbidity currents apparently flowed axially in the young Albian rift, toward the north. This is opposite to what might be expected for a northward-propagating rift and a young ocean opening in a zipperlike fashion from south to north.