922 resultados para Flows in channels


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical techniques for non-equilibrium condensing flows are presented. Conservation equations for homogeneous gas-liquid two-phase compressible flows are solved by using a finite volume method based on an approximate Riemann solver. The phase change consists of the homogeneous nucleation and growth of existing droplets. Nucleation is computed with the classical Volmer-Frenkel model, corrected for the influence of the droplet temperature being higher than the steam temperature due to latent heat release. For droplet growth, two types of heat transfer model between droplets and the surrounding steam are used: a free molecular flow model and a semi-empirical two-layer model which is deemed to be valid over a wide range of Knudsen number. The computed pressure distribution and Sauter mean droplet diameters in a convergent-divergent (Laval) nozzle are compared with experimental data. Both droplet growth models capture qualitatively the pressure increases due to sudden heat release by the non-equilibrium condensation. However the agreement between computed and experimental pressure distributions is better for the two-layer model. The droplet diameter calculated by this model also agrees well with the experimental value, whereas that predicted by the free molecular model is too small. Condensing flows in a steam turbine cascade are calculated at different Mach numbers and inlet superheat conditions and are compared with experiments. Static pressure traverses downstream from the blade and pressure distributions on the blade surface agree well with experimental results in all cases. Once again, droplet diameters computed with the two-layer model give best agreement with the experiments. Droplet sizes are found to vary across the blade pitch due to the significant variation in expansion rate. Flow patterns including oblique shock waves and condensation-induced pressure increases are also presented and are similar to those shown in the experimental Schlieren photographs. Finally, calculations are presented for periodically unsteady condensing flows in a low expansion rate, convergent-divergent (Laval) nozzle. Depending on the inlet stagnation subcooling, two types of self-excited oscillations appear: a symmetric mode at lower inlet subcooling and an asymmetric mode at higher subcooling. Plots of oscillation frequency versus inlet sub-cooling exhibit a hysteresis loop, in accord with observations made by other researchers for moist air flow. Copyright © 2006 by ASME.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel supersonic wind tunnel setup is proposed to enable the investigation of control on a normal shock wave. Previous experimental arrangements were found to suffer from shock instability. Wind tunnel tests with and without control have confirmed the capability of the new setup to stabilise a shock structure at a target position without changing the nature of the shock wave / boundary layer interaction flow at M∞ = 1.3 and M ∞ = 1.5. Flow visualisation and pressure measurements with the new setup have revealed detailed characteristics of shock wave / boundary layer interactions and a λ-shock structure as well as benefits of control in total drag reduction in the presence of 3D bump control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental comparison of several vortex generator geometries was conducted at Mach 1.5, 1.8, and 2.5 to better understand downstream vortex development as a function of device shape and Mach number. The devices had heights less than that of the boundary-layer ("micro"-vortex generators) and were either vane-shaped or of the alternative microramp geometry. LDV was used to measure two components of velocity at several stations downstream of the devices. The velocity data were then fitted to a vortex model so that vortex parameters such as circulation, core radius, and trajectory were estimated. Mach number dependence was seen for all parameters. Vortex height and core radius both tended to decrease slightly with increasing Mach number. A critical vane angle for maximum circulation was observed and also decreased with increasing Mach number. Circulation was seen to scale with wall-friction velocity for Mach 1.5 and 1.8 but not 2.5. © 2012 by W.R. Nolan and H. Babinsky.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development and implementation of measures which promote the reduction of the impacts of forest fires on soils is imperative and should be part of any strategy for forest and soil preservation and recovery, especially considering the actual scenario of continuous growth in the number of fires and burnt area. Consequently, with the dendrocaustologic reality that has characterized the Portuguese mainland in recent decades, a research project promoted by the Center for the Study of Geography and Spatial Planning (CEGOT) was implemented with the objective of applying several erosion mitigation measures in a burned area of the Peneda-Geres National Park in NW Portugal. This paper therefore seeks to present the measures applied in the study area within the project Soil Protec, relating to triggered channel processes and the results of preliminary observations concerning the evaluation of the effectiveness of erosion mitigation measures implemented, as well as their cost/benefit ratio.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water vapour modulates energy flows in Earth's climate system through transfer of latent heat by evaporation and condensation and by modifying the flows of radiative energy both in the longwave and shortwave portions of the electromagnetic spectrum. This article summarizes the role of water vapour in Earth's energy flows with particular emphasis on (1) the powerful thermodynamic constraint of the Clausius Clapeyron equation, (2) dynamical controls on humidity above the boundary layer (or free-troposphere), (3) uncertainty in continuum absorption in the relatively transparent "window" regions of the radiative spectrum and (4) implications for changes in the atmospheric hydrological cycle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the past few years, libraries have started to design public programs that educate patrons about different tools and techniques to protect personal privacy. But do end user solutions provide adequate safeguards against surveillance by corporate and government actors? What does a comprehensive plan for privacy entail in order that libraries live up to their privacy values? In this paper, the authors discuss the complexity of surveillance architecture that the library institution might confront when seeking to defend the privacy rights of patrons. This architecture consists of three main parts: physical or material aspects, logical characteristics, and social factors of information and communication flows in the library setting. For each category, the authors will present short case studies that are culled from practitioner experience, research, and public discourse. The case studies probe the challenges faced by the library—not only when making hardware and software choices, but also choices related to staffing and program design. The paper shows that privacy choices intersect not only with free speech and chilling effects, but also with questions that concern intellectual property, organizational development, civic engagement, technological innovation, public infrastructure, and more. The paper ends with discussion of what libraries will require in order to sustain and improve efforts to serve as stewards of privacy in the 21st century.