928 resultados para Flood forecasting.
Resumo:
Published also as: Documento de Trabajo Banco de España 0504/2005.
Resumo:
The center of low pressure of a tropical disturbance which moved northward in the Gulf of Mexico, reached land between Panama City and Port St. Joe, Florida, on September 20, 1969. This system was nearly stationary for 48 hours producing heavy rainfall in the Quincy-Havana area, 70-80 miles northeast of the center. Rainfall associated with the tropical disturbance exceeded 20 inches over a part of Gadsden County, Florida, during September 20 through 23, 1969, and the maximum rainfall of record occurred at Quincy with 10.87 inches during a 6-hour period on September 21. The 48-hour maximum of 17.71 inches exceeded the 1 in 100-year probability of 16 inches for a 7-day period. The previous maximum rainfall of record at Quincy (more than 12 inches) was on September 14-15, 1924. The characteristics of this historical storm were similar in path and effect to the September 1969 tropical disturbance. Peak runoff from a 1.4-square mile area near Midway, Florida, was 1,540 cfs (cubic feet per second) per square mile. A peak discharge of 45,600 cfs on September 22 at the gaging station on the Little River near Quincy exceeded the previous peak of 25,400 cfs which occurred on December 4, 1964. The peak discharge of 89,400 cfs at Ochlockonee River near Bloxham exceeded the April 1948 peak of 50,200 cfs, which was the previous maximum of record, by 1.8 times. Many flood-measurement sites had peak discharges in excess of that of a 50-year flood. Nearly $200,000 was spent on emergency repairs to roads. An additional $520,000 in contractual work was required to replace four bridges that were destroyed. Agricultural losses were estimated at $1,000,000. (44 page document)
Resumo:
Floods occurred on streams in the vicinity of Perry, Taylor County, Florida, on June 9, 1957, as a result of heavy rains from atropical disturbance. Serious flooding occurred in Perry along Spring and Pimple creeks as outlined by the shaded area in figure 1, requiring the evacuation of about ZOO families from the lowland area. No loss of life was reported. The damages to residential and commercial properties were estimated at several million dollars. Most of the damage was confined to residential areas (fig. 2); however, several stores in the area were damaged by flood waters (fig. 3). This report presents data pertaining to the rainfall accompanying this storm and peak flows of Spring and Pimple creeks in Perry. It contains flood elevations at several points, and peak discharges of the two creeks flowing through Perry. The report also contains a discussion of the rainfall associated with the flood and a description of the general features of the flood. (PDF contains 16 pages.)
Resumo:
Providing on line travel time information to commuters has become an important issue for Advanced Traveler Information Systems and Route Guidance Systems in the past years, due to the increasing traffic volume and congestion in the road networks. Travel time is one of the most useful traffic variables because it is more intuitive than other traffic variables such as flow, occupancy or density, and is useful for travelers in decision making. The aim of this paper is to present a global view of the literature on the modeling of travel time, introducing crucial concepts and giving a thorough classification of the existing tech- niques. Most of the attention will focus on travel time estimation and travel time prediction, which are generally not presented together. The main goals of these models, the study areas and methodologies used to carry out these tasks will be further explored and categorized.
Resumo:
Foreword [pdf, < 0.1 MB] Acknowledgements PHASE 1 [pdf, 0.2 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (July 19–20, 2007, Seattle, U.S.A.) Background Links to Other Programs Workshop Format Session I. Status of climate change scenarios in the PICES region Session II. What are the expected impacts of climate change on regional oceanography and what are some scenarios for these drivers for the next 10 years? Session III. Recruitment forecasting Session IV. What models are out there? How is climate linked to the model? Session V. Assumptions regarding future fishing scenarios and enhancement activities Session VI Where do we go from here? References Appendix 1.1 List of Participants PHASE 2 [pdf, 0.7 MB] Summary of the PICES/NPRB Workshop on Forecasting Climate Impacts on Future Production of Commercially Exploited Fish and Shellfish (October 30, 2007, Victoria, Canada) Background Workshop Agenda Forecast Feasibility Format of Information Modeling Approaches Coupled bio-physical models Stock assessment projection models Comparative approaches Similarities in Data Requests Opportunities for Coordination with Other PICES Groups and International Efforts BACKGROUND REPORTS PREPARED FOR THE PHASE 2 WORKSHOP Northern California Current (U.S.) groundfish production by Melissa Haltuch Changes in sablefish (Anoplopoma fimbria) recruitment in relation to oceanographic conditions by Michael J. Schirripa Northern California Current (British Columbia) Pacific cod (Gadus macrocephalus) production by Caihong Fu and Richard Beamish Northern California Current (British Columbia) sablefish (Anoplopoma fimbria) production by Richard Beamish Northern California Current (British Columbia) pink (Oncorhynchus gorbuscha) and chum (O. keta) salmon production by Richard Beamish Northern California Current (British Columbia) ocean shrimp (Pandalus jordani) production by Caihong Fu Alaska salmon production by Anne Hollowed U.S. walleye pollock (Theragra chalcogramma) production in the eastern Bering Sea and Gulf of Alaska by Kevin Bailey and Anne Hollowed U.S. groundfish production in the eastern Bering Sea by Tom Wilderbuer U.S. crab production in the eastern Bering Sea by Gordon H. Kruse Forecasting Japanese commercially exploited species by Shin-ichi Ito, Kazuaki Tadokoro and Yasuhiro Yamanka Russian fish production in the Japan/East Sea by Yury Zuenko, Vladimir Nuzhdin and Natalia Dolganova Chum salmon (Oncorhynchus keta) production in Korea by Sukyung Kang, Suam Kim and Hyunju Seo Jack mackerel (Trachurus japonicus) production in Korea by Jae Bong Lee and Chang-Ik Zhang Chub mackerel (Scomber japonicus) production in Korea by Jae Bong Lee, Sukyung Kang, Suam Kim, Chang-Ik Zhang and Jin Yeong Kim References Appendix 2.1 List of Participants PHASE 3 [pdf, < 0.1 MB] Summary of the PICES Workshop on Linking Global Climate Model Output to (a) Trends in Commercial Species Productivity and (b) Changes in Broader Biological Communities in the World’s Oceans (May 18, 2008, Gijón, Spain) Appendix 3.1 List of Participants Appendix 3.2 Workshop Agenda (Document contains 101 pages)
Resumo:
Almost all extreme events lasting less than several weeks that significantly impact ecosystems are weather related. This review examines the response of estuarine systems to intense short-term perturbations caused by major weather events such as hurricanes. Current knowledge concerning these effects is limited to relatively few studies where hurricanes and storms impacted estuaries with established environmental monitoring programs. Freshwater inputs associated with these storms were found to initially result in increased primary productivity. When hydrographic conditions are favorable, bacterial consumption of organic matter produced by the phytoplankton blooms and deposited during the initial runoff event can contribute to significant oxygen deficits during subsequent warmer periods. Salinity stress and habitat destruction associated with freshwater inputs, as well as anoxia, adversely affect benthic populations and fish. In contrast, mobile invertebrate species such as shrimp, which have a short life cycle and the ability to migrate during the runoff event, initially benefit from the increased primary productivity and decreased abundance of fish predators. Events studied so far indicate that estuaries rebound in one to three years following major short-term perturbations. However, repeated storm events without sufficient recovery time may cause a fundamental shift in ecosystem structure (Scavia et al. 2002). This is a scenario consistent with the predicted increase in hurricanes for the east coast of the United States. More work on the response of individual species to these stresses is needed so management of commercial resources can be adjusted to allow sufficient recovery time for affected populations.
Resumo:
Policy makers, natural resource managers, regulators, and the public often call on scientists to estimate the potential ecological changes caused by both natural and human-induced stresses, and to determine how those changes will impact people and the environment. To develop accurate forecasts of ecological changes we need to: 1) increase understanding of ecosystem composition, structure, and functioning, 2) expand ecosystem monitoring and apply advanced scientific information to make these complex data widely available, and 3) develop and improve forecast and interpretative tools that use a scientific basis to assess the results of management and science policy actions. (PDF contains 120 pages)
Resumo:
The San Francisco Bay Conservation and Development Commission (BCDC), in continued partnership with the San Francisco Bay Long Term Management Strategies (LTMS) Agencies, is undertaking the development of a Regional Sediment Management Plan for the San Francisco Bay estuary and its watershed (estuary). Regional sediment management (RSM) is the integrated management of littoral, estuarine, and riverine sediments to achieve balanced and sustainable solutions to sediment related needs. Regional sediment management recognizes sediment as a resource. Sediment processes are important components of coastal and riverine systems that are integral to environmental and economic vitality. It relies on the context of the sediment system and forecasting the long-range effects of management actions when making local project decisions. In the San Francisco Bay estuary, the sediment system includes the Sacramento and San Joaquin delta, the bay, its local tributaries and the near shore coastal littoral cell. Sediment flows from the top of the watershed, much like water, to the coast, passing through rivers, marshes, and embayments on its way to the ocean. Like water, sediment is vital to these habitats and their inhabitants, providing nutrients and the building material for the habitat itself. When sediment erodes excessively or is impounded behind structures, the sediment system becomes imbalanced, and rivers become clogged or conversely, shorelines, wetlands and subtidal habitats erode. The sediment system continues to change in response both to natural processes and human activities such as climate change and shoreline development. Human activities that influence the sediment system include flood protection programs, watershed management, navigational dredging, aggregate mining, shoreline development, terrestrial, riverine, wetland, and subtidal habitat restoration, and beach nourishment. As observed by recent scientific analysis, the San Francisco Bay estuary system is changing from one that was sediment rich to one that is erosional. Such changes, in conjunction with increasing sea level rise due to climate change, require that the estuary sediment and sediment transport system be managed as a single unit. To better manage the system, its components, and human uses of the system, additional research and knowledge of the system is needed. Fortunately, new sediment science and modeling tools provide opportunities for a vastly improved understanding of the sediment system, predictive capabilities and analysis of potential individual and cumulative impacts of projects. As science informs management decisions, human activities and management strategies may need to be modified to protect and provide for existing and future infrastructure and ecosystem needs. (PDF contains 3 pages)
Resumo:
4 p.
Resumo:
Arid and semiarid landscapes comprise nearly a third of the Earth's total land surface. These areas are coming under increasing land use pressures. Despite their low productivity these lands are not barren. Rather, they consist of fragile ecosystems vulnerable to anthropogenic disturbance.
The purpose of this thesis is threefold: (I) to develop and test a process model of wind-driven desertification, (II) to evaluate next-generation process-relevant remote monitoring strategies for use in arid and semiarid regions, and (III) to identify elements for effective management of the world's drylands.
In developing the process model of wind-driven desertification in arid and semiarid lands, field, remote sensing, and modeling observations from a degraded Mojave Desert shrubland are used. This model focuses on aeolian removal and transport of dust, sand, and litter as the primary mechanisms of degradation: killing plants by burial and abrasion, interrupting natural processes of nutrient accumulation, and allowing the loss of soil resources by abiotic transport. This model is tested in field sampling experiments at two sites and is extended by Fourier Transform and geostatistical analysis of high-resolution imagery from one site.
Next, the use of hyperspectral remote sensing data is evaluated as a substantive input to dryland remote monitoring strategies. In particular, the efficacy of spectral mixture analysis (SMA) in discriminating vegetation and soil types and detennining vegetation cover is investigated. The results indicate that hyperspectral data may be less useful than often thought in determining vegetation parameters. Its usefulness in determining soil parameters, however, may be leveraged by developing simple multispectral classification tools that can be used to monitor desertification.
Finally, the elements required for effective monitoring and management of arid and semiarid lands are discussed. Several large-scale multi-site field experiments are proposed to clarify the role of wind as a landscape and degradation process in dry lands. The role of remote sensing in monitoring the world's drylands is discussed in terms of optimal remote sensing platform characteristics and surface phenomena which may be monitored in order to identify areas at risk of desertification. A desertification indicator is proposed that unifies consideration of environmental and human variables.
Resumo:
In this paper, some observations are made following a flash-flood that occurred in Stake Clough, a small tributary of the River Goyt, during the evening of 6 August 1996. The site was visited eight times between 8 August - 30 October 1996 to take samples and make observations on the stream. The flood scoured the bed of Stake Clough but more significantly, caused it to change course along the middle part of the floodplain. Initially after the flood, the numbers of insects in all stretches of the stream channel were low (100-200 m super(2)), but then gradually rose to population densities approaching ten times this figure. The benthos was dominated by the Chironomidae and also leuctrid stoneflies (Leuctra nigra, L. hippopus and L. inermis). On 8th August 1996, 12 mesh bags, each containing oak leaves, were placed in the stream and collected after 24 hours. These were also dominated by chironomids, and contained relatively high numbers of the caddis, Potamophylax cingulatus.