900 resultados para Finite-element modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Due to its ability to represent intricate systems with material nonlinearities as well as irregular loading, boundary, geometrical and material domains, the finite element (FE) method has been recognized as an important computational tool in spinal biomechanics. Current FE models generally account for a single distinct spinal geometry with one set of material properties despite inherently large inter-subject variability. The uncertainty and high variability in tissue material properties, geometry, loading and boundary conditions has cast doubt on the reliability of their predictions and comparability with reported in vitro and in vivo values. A multicenter study was undertaken to compare the results of eight well-established models of the lumbar spine that have been developed, validated and applied for many years. Models were subjected to pure and combined loading modes and their predictions were compared to in vitro and in vivo measurements for intervertebral rotations, disc pressures and facet joint forces. Under pure moment loading, the predicted L1-5 rotations of almost all models fell within the reported in vitro ranges; their median values differed on average by only 2° for flexion-extension, 1° for lateral bending and 5° for axial rotation. Predicted median facet joint forces and disc pressures were also in good agreement with previously published median in vitro values. However, the ranges of predictions were larger and exceeded the in vitro ranges, especially for facet joint forces. For all combined loading modes, except for flexion, predicted median segmental intervertebral rotations and disc pressures were in good agreement with in vivo values. The simulations yielded median facet joint forces of 0 N in flexion, 38 N in extension, 14 N in lateral bending and 60 N in axial rotation that could not be validated due to the paucity of in vivo facet joint forces. In light of high inter-subject variability, one must be cautious when generalizing predictions obtained from one deterministic model. This study demonstrates however that the predictive power increases when FE models are combined together. The median of individual numerical results can hence be used as an improved tool in order to estimate the response of the lumbar spine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study design Retrospective validation study. Objectives To propose a method to evaluate, from a clinical standpoint, the ability of a finite-element model (FEM) of the trunk to simulate orthotic correction of spinal deformity and to apply it to validate a previously described FEM. Summary of background data Several FEMs of the scoliotic spine have been described in the literature. These models can prove useful in understanding the mechanisms of scoliosis progression and in optimizing its treatment, but their validation has often been lacking or incomplete. Methods Three-dimensional (3D) geometries of 10 patients before and during conservative treatment were reconstructed from biplanar radiographs. The effect of bracing was simulated by modeling displacements induced by the brace pads. Simulated clinical indices (Cobb angle, T1–T12 and T4–T12 kyphosis, L1–L5 lordosis, apical vertebral rotation, torsion, rib hump) and vertebral orientations and positions were compared to those measured in the patients' 3D geometries. Results Errors in clinical indices were of the same order of magnitude as the uncertainties due to 3D reconstruction; for instance, Cobb angle was simulated with a root mean square error of 5.7°, and rib hump error was 5.6°. Vertebral orientation was simulated with a root mean square error of 4.8° and vertebral position with an error of 2.5 mm. Conclusions The methodology proposed here allowed in-depth evaluation of subject-specific simulations, confirming that FEMs of the trunk have the potential to accurately simulate brace action. These promising results provide a basis for ongoing 3D model development, toward the design of more efficient orthoses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cold-formed steel wall frame systems using lipped or unlipped C-sections and gypsum plasterboard lining are commonly utilised in the construction of both the load bearing and non-load bearing walls in the residential, commercial and industrial buildings. However, the structural behaviour of unlined and lined stud wall frames is not well understood and adequate design rules are not available. A detailed research program was therefore undertaken to investigate the behaviour of stud wall frame systems. As the first step in this research, the problem relating to the degree of end fixity of stud was investigated. The studs are usually connected to the top and bottom tracks and the degree of end fixity provided by these tracks is not adequately addressed by the design codes. A finite element model of unlined frames was therefore developed, and validated using full scale experimental results. It was then used in a detailed parametric study to develop appropriate design rules for unlined wall frames. This study has shown that by using appropriate effective length factors, the ultimate load and failure modes of the unlined studs can be accurately predicted using the provisions of Australian or American cold-formed steel structures design codes. This paper presents the details of the finite element analyses, the results and recommended design rules for unlined wall frames.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lasers are very efficient in heating localized regions and hence they find a wide application in surface treatment processes. The surface of a material can be selectively modified to give superior wear and corrosion resistance. In laser surface-melting and welding problems, the high temperature gradient prevailing in the free surface induces a surface-tension gradient which is the dominant driving force for convection (known as thermo-capillary or Marangoni convection). It has been reported that the surface-tension driven convection plays a dominant role in determining the melt pool shape. In most of the earlier works on laser-melting and related problems, the finite difference method (FDM) has been used to solve the Navier Stokes equations [1]. Since the Reynolds number is quite high in these cases, upwinding has been used. Though upwinding gives physically realistic solutions even on a coarse grid, the results are inaccurate. McLay and Carey have solved the thermo-capillary flow in welding problems by an implicit finite element method [2]. They used the conventional Galerkin finite element method (FEM) which requires that the pressure be interpolated by one order lower than velocity (mixed interpolation). This restricts the choice of elements to certain higher order elements which need numerical integration for evaluation of element matrices. The implicit algorithm yields a system of nonlinear, unsymmetric equations which are not positive definite. Computations would be possible only with large mainframe computers.Sluzalec [3] has modeled the pulsed laser-melting problem by an explicit method (FEM). He has used the six-node triangular element with mixed interpolation. Since he has considered the buoyancy induced flow only, the velocity values are small. In the present work, an equal order explicit FEM is used to compute the thermo-capillary flow in the laser surface-melting problem. As this method permits equal order interpolation, there is no restriction in the choice of elements. Even linear elements such as the three-node triangular elements can be used. As the governing equations are solved in a sequential manner, the computer memory requirement is less. The finite element formulation is discussed in this paper along with typical numerical results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The deep transverse metatarsal ligaments (DTML) play an important role in stabilizing the metatarsal bones and manipulating foot transverse arch deformation. However, the biomechanical research about DTML in the foot maneuver is quite few. Due to the difficulties and lack of better measurement technology for these ligaments experimental monitor, the load transfer mechanism and internal stress state also hadn't been well addressed. The purpose of this study was to develop a detailing foot finite element model including DTML tissues, to investigate the mechanical response of DTML during the landing condition. The DTML was considered as hyperelastic material model was used to represent the nonlinear and nearly incompressible nature of the ligament tissue. From the simulation results, it is clearly to find that the peak maiximal principal stress of DTML was between the third and fourth metatarsals. Meanwhile, it seems the DTML in the middle position experienced higher tension than the sides DTML.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: Biomechanical stress analysis has been used for plaque vulnerability assessment. The presence of plaque hemorrhage (PH) is a feature of plaque vulnerability and is associated with thromboembolic ischemic events. The purpose of the present study was to use finite element analysis (FEA) to compare the stress profiles of hemorrhagic and non-hemorrhagic profiles. Methods and Results: Forty-five consecutive patients who had suffered a cerebrovascular ischemic event with an underlying carotid artery disease underwent high-resolution magnetic resonance imaging (MRI) of their symptomatic carotid artery in a 1.5-T MRI system. Axial images were manually segmented for various plaque components and used for FEA. Maximum critical stress (M-CstressSL) for each slice was determined. Within a plaque, the maximum M-CstressSL for each slice of a plaque was selected to represent the maximum critical stress of that plaque (M-CstressPL) and used to compare hemorrhagic and non-hemorrhagic plaques. A total of 62% of plaques had hemorrhage. It was observed that plaques with hemorrhage had significantly higher stress (M-CstressPL) than plaques without PH (median [interquartile range]: 315 kPa [247-434] vs. 200 kPa [171-282], P=0.003). Conclusions: Hemorrhagic plaques have higher biomechanical stresses than non-hemorrhagic plaques. MRI-based FEA seems to have the potential to assess plaque vulnerability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High mechanical stress in atherosclerotic plaques at vulnerable sites, called critical stress, contributes to plaque rupture. The site of minimum fibrous cap (FC) thickness (FCMIN) and plaque shoulder are well-documented vulnerable sites. The inherent weakness of the FC material at the thinnest point increases the stress, making it vulnerable, and it is the big curvature of the lumen contour over FC which may result in increased plaque stress. We aimed to assess critical stresses at FCMIN and the maximum lumen curvature over FC (LCMAX) and quantify the difference to see which vulnerable site had the highest critical stress and was, therefore, at highest risk of rupture. One hundred patients underwent high resolution carotid magnetic resonance (MR) imaging. We used 352 MR slices with delineated atherosclerotic components for the simulation study. Stresses at all the integral nodes along the lumen surface were calculated using the finite-element method. FCMIN and LCMAX were identified, and critical stresses at these sites were assessed and compared. Critical stress at FC MIN was significantly lower than that at LCMAX (median: 121.55 kPa; inter quartile range (IQR) = [60.70-180.32] kPa vs. 150.80 kPa; IQR = [91.39-235.75] kPa, p < 0.0001). If critical stress at FCMIN was only used, then the stress condition of 238 of 352 MR slices would be underestimated, while if the critical stress at LCMAX only was used, then 112 out of 352 would be underestimated. Stress analysis at FCMIN and LCMAX should be used for a refined mechanical risk assessment of atherosclerotic plaques, since material failure at either site may result in rupture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: High-resolution magnetic resonance (MR) imaging has been used for MR imaging-based structural stress analysis of atherosclerotic plaques. The biomechanical stress profile of stable plaques has been observed to differ from that of unstable plaques; however, the role that structural stresses play in determining plaque vulnerability remains speculative. Methods: A total of 61 patients with previous history of symptomatic carotid artery disease underwent carotid plaque MR imaging. Plaque components of the index artery such as fibrous tissue, lipid content and plaque haemorrhage (PH) were delineated and used for finite element analysis-based maximum structural stress (M-C Stress) quantification. These patients were followed up for 2 years. The clinical end point was occurrence of an ischaemic cerebrovascular event. The association of the time to the clinical end point with plaque morphology and M-C Stress was analysed. Results: During a median follow-up duration of 514 days, 20% of patients (n=12) experienced an ischaemic event in the territory of the index carotid artery. Cox regression analysis indicated that M-C Stress (hazard ratio (HR): 12.98 (95% confidence interval (CI): 1.32-26.67, pZ0.02), fibrous cap (FC) disruption (HR: 7.39 (95% CI: 1.61e33.82), p Z 0.009) and PH (HR: 5.85 (95% CI: 1.27e26.77), p Z 0.02) are associated with the development of subsequent cerebrovascular events. Plaques associated with future events had higher M-C Stress than those which had remained asymptomatic (median (interquartile range, IQR): 330 kPa (229e494) vs. 254 kPa (166-290), p Z0.04). Conclusions: High biomechanical structural stresses, in addition to FC rupture and PH, are associated with subsequent cerebrovascular events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: There is considerable evidence that patients with carotid artery stenosis treated immediately after the ischaemic cerebrovascular event have a better clinical outcome than those who have delayed treatment. Biomechanical assessment of carotid plaques using high-resolution MRI can help examine the relationship between the timing of carotid plaque symptomology and maximum simulated plaque stress concentration. Methods: Fifty patients underwent high-resolution multisequence in vivo MRI of their carotid arteries. Patients with acute symptoms (n=25) underwent MRI within 72 h of the onset of ischaemic cerebrovascular symptoms, whereas recently symptomatic patients (n=25) underwent MRI from 2 to 6 weeks after the onset of symptoms. Stress analysis was performed based on the geometry derived from in vivo MRI of the symptomatic carotid artery at the point of maximum stenosis. The peak stresses within the plaques of the two groups were compared. Results: Patient demographics were comparable for both groups. All the patients in the recently symptomatic group had severe carotid stenosis in contrast to patients with acute symptoms who had predominantly mild to moderate carotid stenosis. The simulated maximum stresses in patients with acute symptoms was significantly higher than in recently symptomatic patients (median (IQR): 313310 4 dynes/cm 2 (295 to 382) vs 2523104 dynes/cm 2 (236 to 311), p=0.02). Conclusions: Patients have extremely unstable, high-risk plaques, with high stresses, immediately after an acute cerebrovascular event, even at lower degrees of carotid stenoses. Biomechanical stress analysis may help us refine our risk-stratification criteria for the management of patients with carotid artery disease in future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: The aim of this study was to explore whether there is a relationship between the degree of MR-defined inflammation using ultra small super-paramagnetic iron oxide (USPIO) particles, and biomechanical stress using finite element analysis (FEA) techniques, in carotid atheromatous plaques. Methods and Results: 18 patients with angiographically proven carotid stenoses underwent multi-sequence MR imaging before and 36 h after USPIO infusion. T2 * weighted images were manually segmented into quadrants and the signal change in each quadrant normalised to adjacent muscle was calculated after USPIO administration. Plaque geometry was obtained from the rest of the multi-sequence dataset and used within a FEA model to predict maximal stress concentration within each slice. Subsequently, a new statistical model was developed to explicitly investigate the form of the relationship between biomechanical stress and signal change. The Spearman's rank correlation coefficient for USPIO enhanced signal change and maximal biomechanical stress was -0.60 (p = 0.009). Conclusions: There is an association between biomechanical stress and USPIO enhanced MR-defined inflammation within carotid atheroma, both known risk factors for plaque vulnerability. This underlines the complex interaction between physiological processes and biomechanical mechanisms in the development of carotid atheroma. However, this is preliminary data that will need validation in a larger cohort of patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Object. Individuals with carotid atherosclerosis develop symptoms following rupture of vulnerable plaques. Biomechanical stresses within this plaque may increase vulnerability to rupture. In this report the authors describe the use of in vivo carotid plaque imaging and computational mechanics to document the magnitude and distribution of intrinsic plaque stresses. Methods. Ten (five symptomatic and five asymptomatic) individuals underwent plaque characterization magnetic resonance (MR) imaging. Plaque geometry and composition were determined by multisequence review. Intrinsic plaque stress profiles were generated from 3D meshes by using finite element computational analysis. Differences in principal (shear) stress between normal and diseased sections of the carotid artery and between symptomatic and asymptomatic plaques were noted. Results. There was a significant difference in peak principal stress between diseased and nondiseased segments of the artery (mean difference 537.65 kPa, p < 0.05). Symptomatic plaques had higher mean stresses than asymptomatic plaques (627.6 kPa compared with 370.2 kPa, p = 0.05), which were independent of luminal stenosis and plaque composition. Conclusions. Significant differences in plaque stress exist between plaques from symptomatic individuals and those from asymptomatic individuals. The MR imaging-based computational analysis may therefore be a useful aid to identification of vulnerable plaques in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A finite element analysis of laminated shells of revolution reinforced with laminated stifieners is described here-in. A doubly curved quadrilateral laminated anisotropic shell of revolution finite element of 48 d.o.f. is used in conjunction with two stiffener elements of 16 d.o.f. namely: (i) A laminated anisotropic parallel circle stiffener element (PCSE); (ii) A laminated anisotropic meridional stiffener element (MSE). These stifiener elements are formulated under line member assumptions as degenerate cases of the quadrilateral shell element to achieve compatibility all along the shell-stifiener junction lines. The solutions to the problem of a stiffened cantilever cylindrical shell are used to check the correctness of the present program while it's capability is shown through the prediction of the behavior of an eccentrically stiffened laminated hyperboloidal shell.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The finite element method (FEM) is used to determine for pitch-point, mid-point and tip loading, the deflection curve of a Image 1 diamentral pitch (DP) standard spur gear tooth corresponding to number of teeth of 14, 21, 26 and 34. In all these cases the deflection of the gear tooth at the point of loading obtained by FEM is in good agreement with the experimental value. The contraflexure in the deflection curve at the point of loading observed experimentally in the cases of pitch-point and mid-point loading, is predicted correctly by the FEM analysis.