934 resultados para Finite volume method
Resumo:
A distributed Lagrangian moving-mesh finite element method is applied to problems involving changes of phase. The algorithm uses a distributed conservation principle to determine nodal mesh velocities, which are then used to move the nodes. The nodal values are obtained from an ALE (Arbitrary Lagrangian-Eulerian) equation, which represents a generalization of the original algorithm presented in Applied Numerical Mathematics, 54:450--469 (2005). Having described the details of the generalized algorithm it is validated on two test cases from the original paper and is then applied to one-phase and, for the first time, two-phase Stefan problems in one and two space dimensions, paying particular attention to the implementation of the interface boundary conditions. Results are presented to demonstrate the accuracy and the effectiveness of the method, including comparisons against analytical solutions where available.
Resumo:
We consider the numerical treatment of second kind integral equations on the real line of the form ∅(s) = ∫_(-∞)^(+∞)▒〖κ(s-t)z(t)ϕ(t)dt,s=R〗 (abbreviated ϕ= ψ+K_z ϕ) in which K ϵ L_1 (R), z ϵ L_∞ (R) and ψ ϵ BC(R), the space of bounded continuous functions on R, are assumed known and ϕ ϵ BC(R) is to be determined. We first derive sharp error estimates for the finite section approximation (reducing the range of integration to [-A, A]) via bounds on (1-K_z )^(-1)as an operator on spaces of weighted continuous functions. Numerical solution by a simple discrete collocation method on a uniform grid on R is then analysed: in the case when z is compactly supported this leads to a coefficient matrix which allows a rapid matrix-vector multiply via the FFT. To utilise this possibility we propose a modified two-grid iteration, a feature of which is that the coarse grid matrix is approximated by a banded matrix, and analyse convergence and computational cost. In cases where z is not compactly supported a combined finite section and two-grid algorithm can be applied and we extend the analysis to this case. As an application we consider acoustic scattering in the half-plane with a Robin or impedance boundary condition which we formulate as a boundary integral equation of the class studied. Our final result is that if z (related to the boundary impedance in the application) takes values in an appropriate compact subset Q of the complex plane, then the difference between ϕ(s)and its finite section approximation computed numerically using the iterative scheme proposed is ≤C_1 [kh log〖(1⁄kh)+(1-Θ)^((-1)⁄2) (kA)^((-1)⁄2) 〗 ] in the interval [-ΘA,ΘA](Θ<1) for kh sufficiently small, where k is the wavenumber and h the grid spacing. Moreover this numerical approximation can be computed in ≤C_2 N logN operations, where N = 2A/h is the number of degrees of freedom. The values of the constants C1 and C2 depend only on the set Q and not on the wavenumber k or the support of z.
Resumo:
We consider the Dirichlet and Robin boundary value problems for the Helmholtz equation in a non-locally perturbed half-plane, modelling time harmonic acoustic scattering of an incident field by, respectively, sound-soft and impedance infinite rough surfaces.Recently proposed novel boundary integral equation formulations of these problems are discussed. It is usual in practical computations to truncate the infinite rough surface, solving a boundary integral equation on a finite section of the boundary, of length 2A, say. In the case of surfaces of small amplitude and slope we prove the stability and convergence as A→∞ of this approximation procedure. For surfaces of arbitrarily large amplitude and/or surface slope we prove stability and convergence of a modified finite section procedure in which the truncated boundary is ‘flattened’ in finite neighbourhoods of its two endpoints. Copyright © 2001 John Wiley & Sons, Ltd.
Resumo:
e consider integral equations on the half-line of the form and the finite section approximation to x obtained by replacing the infinite limit of integration by the finite limit β. We establish conditions under which, if the finite section method is stable for the original integral equation (i.e. exists and is uniformly bounded in the space of bounded continuous functions for all sufficiently large β), then it is stable also for a perturbed equation in which the kernel k is replaced by k + h. The class of perturbations allowed includes all compact and some non-compact perturbations of the integral operator. Using this result we study the stability and convergence of the finite section method in the space of continuous functions x for which ()()()=−∫∞dttxt,sk)s(x0()syβxβx()sxsp+1 is bounded. With the additional assumption that ()(tskt,sk−≤ where ()()(),qsomefor,sassOskandRLkq11>+∞→=∈− we show that the finite-section method is stable in the weighted space for ,qp≤≤0 provided it is stable on the space of bounded continuous functions. With these results we establish error bounds in weighted spaces for x - xβ and precise information on the asymptotic behaviour at infinity of x. We consider in particular the case when the integral operator is a perturbation of a Wiener-Hopf operator and illustrate this case with a Wiener-Hopf integral equation arising in acoustics.
Resumo:
We present a Galerkin method with piecewise polynomial continuous elements for fully nonlinear elliptic equations. A key tool is the discretization proposed in Lakkis and Pryer, 2011, allowing us to work directly on the strong form of a linear PDE. An added benefit to making use of this discretization method is that a recovered (finite element) Hessian is a byproduct of the solution process. We build on the linear method and ultimately construct two different methodologies for the solution of second order fully nonlinear PDEs. Benchmark numerical results illustrate the convergence properties of the scheme for some test problems as well as the Monge–Amp`ere equation and the Pucci equation.
Resumo:
We propose a numerical method to approximate the solution of second order elliptic problems in nonvariational form. The method is of Galerkin type using conforming finite elements and applied directly to the nonvariational (nondivergence) form of a second order linear elliptic problem. The key tools are an appropriate concept of “finite element Hessian” and a Schur complement approach to solving the resulting linear algebra problem. The method is illustrated with computational experiments on three linear and one quasi-linear PDE, all in nonvariational form.
Resumo:
A procedure to model optical diffused-channel waveguides is presented in this work. The dielectric waveguides present anisotropic refractive indexes which are calculated from the proton concentration. The proton concentration inside the channel is calculated by the anisotropic 2D-linear diffusion equation and converted to the refractive indexes using mathematical relations obtained from experimental data, the arbitrary refractive index profile is modeled by a. nodal expansion in the base functions. The TE and TM-like propagation properties (effective index) and the electromagnetic fields for well-annealed proton-exchanged (APE) LiNbO3 waveguides are computed by the finite element method.
Resumo:
We employ finite elements methods for the approximation of solutions of the Ginzburg-Landau equations describing the deconfinement transition in quantum chromodynamics. These methods seem appropriate for situations where the deconfining transition occurs over a finite volume as in relativistic heavy ion collisions. where in addition expansion of the system and flow of matter are important. Simulation results employing finite elements are presented for a Ginzburg-Landau equation based on a model free energy describing the deconfining transition in pure gauge SU(2) theory. Results for finite and infinite system are compared. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
A finite element analysis was carried out to study the role of prefabricated threaded split shaft post (Flexi-Post) on dentinal stress in pulpless tooth. Three dimensional plane strain model of mesio-distal section of a human maxillary central incisor without restoration was analysed with the MSC/NASTRAN (MacNeal/ Schwendler) general purpose finite analysis program was executed on a microcomputer. The model as discretized into 48.954 axisymmetric finite elements defined by 10.355 nodes. Each element was assigned unique elastic properties to represent the materials modeled. Homogeneity, isotropy and linear elasticity were assume for all material. A simulation of static load of 100N was applied to the incisal edge of the post; vertical. Maximal principal stresses and von Mises equivalent stress were calculated. Using the element analysis model employed in this study, the following can be concluded concerning threaded split shaft post (Flexi-Post): Maximum principal stresses in dentin were located at cervical place and at the post apex. The apical threads of the post not redirecting stresses away from the root.
Resumo:
This work presents an investigation into the use of the finite element method and artificial neural networks in the identification of defects in industrial plants metallic tubes, due to the aggressive actions of the fluids contained by them, and/or atmospheric agents. The methodology used in this study consists of simulating a very large number of defects in a metallic tube, using the finite element method. Both variations in width and height of the defects are considered. Then, the obtained results are used to generate a set of vectors for the training of a perceptron multilayer artificial neural network. Finally, the obtained neural network is used to classify a group of new defects, simulated by the finite element method, but that do not belong to the original dataset. The reached results demonstrate the efficiency of the proposed approach, and encourage future works on this subject.
Resumo:
In this work, the analysis of electroosmotic pumping mechanisms in microchannels is performed through the solution of Poisson-Boltzmann and Navier Stokes equations by the Finite Element Method. This approach is combined with a Newton-Raphson iterative scheme, allowing a full treatment of the non-linear Poisson-Boltzmann source term which is normally approximated by linearizations in other methods.
Resumo:
In this work simulations of incompressible fluid flows have been done by a Least Squares Finite Element Method (LSFEM) using velocity-pressure-vorticity and velocity-pressure-stress formulations, named u-p-ω) and u-p-τ formulations respectively. These formulations are preferred because the resulting equations are partial differential equations of first order, which is convenient for implementation by LSFEM. The main purposes of this work are the numerical computation of laminar, transitional and turbulent fluid flows through the application of large eddy simulation (LES) methodology using the LSFEM. The Navier-Stokes equations in u-p-ω and u-p-τ formulations are filtered and the eddy viscosity model of Smagorinsky is used for modeling the sub-grid-scale stresses. Some benchmark problems are solved for validate the numerical code and the preliminary results are presented and compared with available results from the literature. Copyright © 2005 by ABCM.
Resumo:
This paper describes a software tool, called LEVSOFT, suitable for the electric field simulations of corona electrodes by the Finite Element Method (FEM). Special attention was paid to the user friendly construction of geometries with corners and sharp points, and to the fast generation of highly refined triangular meshes and field maps. The execution of self-adaptive meshes was also implemented. These customized features make the code attractive for the simulation of needle-type corona electrodes. Some case examples involving needle type electrodes are presented.