254 resultados para Fingers


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multizinc finger peptides are likely to reach increased prominence in the search for the “ideal” designer transcription factor for in vivo applications such as gene therapy. However, for these treatments to be effective and safe, the peptides must bind with high affinity and, more importantly, with great specificity. Our previous research has shown that zinc finger arrays can be made to bind 18 bp of DNA with picomolar affinity, but also has suggested that arrays of fingers also may bind tightly to related sequences. This work addresses the question of zinc finger DNA binding specificity. We show that by changing the way in which zinc finger arrays are constructed—by linking three two-finger domains rather than two three-finger units—far greater target specificity can be achieved through increased discrimination against mutated or closely related sequences. These new peptides have the added capability of being able to span two short gaps of unbound DNA, although still binding with picomolar affinity to their target sites. We believe that this new method of constructing zinc finger arrays will offer greater efficacy in the fields of gene therapy and in the production of transgenic organisms than previously reported zinc finger arrays.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we describe the components of a histone deacetylase (HDAC) complex that we term the CoREST-HDAC complex. CoREST-HDAC is composed of polypeptides distinct from previously characterized HDAC1/2-containing complexes such as the mSin3 and nucleosome remodeling and deacetylating (NRD, also named NURD, NuRD) complex. Interestingly, we do not observe RbAp46 and RbAp48 in this complex, although these proteins have been observed in all previously identified complexes and are thought to be part of an HDAC1/2 core. We identify the transcriptional corepressor CoREST and a protein with homology to polyamine oxidases as components of CoREST-HDAC. The HDAC1/2-interacting region of CoREST is mapped to a 179-aa region containing a SANT domain, a domain found in other HDAC1/2-interacting proteins such as NCoR, MTA1, and MTA2. Furthermore, we demonstrate that the corepressor function of CoREST depends on this region. Although CoREST initially was cloned as a corepressor to REST (RE1 silencing transcription factor/neural restrictive silencing factor), we find no evidence for the existence of the eight-zinc finger REST transcription factor as an interacting partner in this complex; however, we do find evidence for association of the putative oncogene ZNF 217 that contains eight zinc fingers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The genes rbcS and rbcL encode, respectively, the small and large subunits of the photosynthetic carbon dioxide fixation enzyme ribulose bisphosphate carboxylase/oxygenase. There is a single rbcL gene in each chloroplast chromosome; a family of rbcS genes is located in the nuclear genome. These two genes are not expressed in mesophyll cells but are in adjacent bundle-sheath cells of leaves of the C4 plant Zea mays. Two regions of the maize gene rbcS-m3 are required for suppressing expression in mesophyll cells. One region is just beyond the translation termination site in the 3′ region, and the other is several hundred base pairs upstream of the transcription start site. A binding site for a protein with limited homology to the viral, yeast, and mammalian transcription repressor-activator YY1 (Yin-Yang I), has now been identified in the 3′ region. A maize gene for a protein with zinc fingers homologous to those of YY1 has been isolated, characterized, and expressed in Escherichia coli. The gene is designated trm1 (transcription repressor-maize 1). The protein TRM1 binds to the YY1-like site and, in addition, TRM1 binds to two sequence regions in the 5′ region of the gene that have no homology to the YY1 site. Mutagenesis or deletion of any of these three sequences eliminates repression of rbcS-m3 reporter genes in mesophyll cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Detection of similarity is particularly difficult for small proteins and thus connections between many of them remain unnoticed. Structure and sequence analysis of several metal-binding proteins reveals unexpected similarities in structural domains classified as different protein folds in SCOP and suggests unification of seven folds that belong to two protein classes. The common motif, termed treble clef finger in this study, forms the protein structural core and is 25–45 residues long. The treble clef motif is assembled around the central zinc ion and consists of a zinc knuckle, loop, β-hairpin and an α-helix. The knuckle and the first turn of the helix each incorporate two zinc ligands. Treble clef domains constitute the core of many structures such as ribosomal proteins L24E and S14, RING fingers, protein kinase cysteine-rich domains, nuclear receptor-like fingers, LIM domains, phosphatidylinositol-3-phosphate-binding domains and His-Me finger endonucleases. The treble clef finger is a uniquely versatile motif adaptable for various functions. This small domain with a 25 residue structural core can accommodate eight different metal-binding sites and can have many types of functions from binding of nucleic acids, proteins and small molecules, to catalysis of phosphodiester bond hydrolysis. Treble clef motifs are frequently incorporated in larger structures or occur in doublets. Present analysis suggests that the treble clef motif defines a distinct structural fold found in proteins with diverse functional properties and forms one of the major zinc finger groups.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fine finger and hand movements in humans, monkeys, and rats are under the direct control of the corticospinal tract (CST). CST lesions lead to severe, long-term deficits of precision movements. We transected completely both CSTs in adult rats and treated the animals for 2 weeks with an antibody that neutralized the central nervous system neurite growth inhibitory protein Nogo-A (mAb IN-1). Anatomical studies of the rubrospinal tracts showed that the number of collaterals innervating the cervical spinal cord doubled in the mAb IN-1- but not in the control antibody-treated animals. Precision movements of the forelimb and fingers were severely impaired in the controls, but almost completely recovered in the mAb IN-1-treated rats. Low threshold microstimulation of the motor cortex induced a rapid forelimb electromyography response that was mediated by the red nucleus in the mAb IN-1 animals but not in the controls. These findings demonstrate an unexpectedly high capacity of the adult central nervous system motor system to sprout and reorganize in a targeted and functionally meaningful way.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Poly(ADP)-ribose polymerase (PADPRP) has been purified to apparent homogeneity from suspension cultures of the maize (Zea mays) callus line. The purified enzyme is a single polypeptide of approximately 115 kD, which appears to dimerize through an S-S linkage. The catalytic properties of the maize enzyme are very similar to those of its animal counterpart. The amino acid sequences of three tryptic peptides were obtained by microsequencing. Antibodies raised against peptides from maize PADPRP cross-reacted specifically with the maize enzyme but not with the enzyme from human cells, and vice versa. We have also characterized a 3.45-kb expressed-sequence-tag clone that contains a full-length cDNA for maize PADPRP. An open reading frame of 2943 bp within this clone encodes a protein of 980 amino acids. The deduced amino acid sequence of the maize PADPRP shows 40% to 42% identity and about 50% similarity to the known vertebrate PADPRP sequences. All important features of the modular structure of the PADPRP molecule, such as two zinc fingers, a putative nuclear localization signal, the automodification domain, and the NAD+-binding domain, are conserved in the maize enzyme. Northern-blot analysis indicated that the cDNA probe hybridizes to a message of about 4 kb.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experimental studies of complete mammalian genes and other genetic domains are impeded by the difficulty of introducing large DNA molecules into cells in culture. Previously we have shown that GST–Z2, a protein that contains three zinc fingers and a proline-rich multimerization domain from the polydactyl zinc finger protein RIP60 fused to glutathione S-transferase (GST), mediates DNA binding and looping in vitro. Atomic force microscopy showed that GST–Z2 is able to condense 130–150 kb bacterial artificial chromosomes (BACs) into protein–DNA complexes containing multiple DNA loops. Condensation of the DNA loops onto the Z2 protein–BAC DNA core complexes with cationic lipid resulted in particles that were readily transferred into multiple cell types in culture. Transfer of total genomic linear DNA containing amplified DHFR genes into DHFR– cells by GST–Z2 resulted in a 10-fold higher transformation rate than calcium phosphate co-precipitation. Chinese hamster ovarian cells transfected with a BAC containing the human TP53 gene locus expressed p53, showing native promoter elements are active after GST–Z2-mediated gene transfer. Because DNA condensation by GST–Z2 does not require the introduction of specific recognition sequences into the DNA substrate, condensation by the Z2 domain of RIP60 may be used in conjunction with a variety of other agents to provide a flexible and efficient non-viral platform for the delivery of large genes into mammalian cells.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Signals emanating from CD40 play crucial roles in B-cell function. To identify molecules that transduce CD40 signalings, we have used the yeast two-hybrid system to done cDNAs encoding proteins that bind the cytoplasmic tail of CD40. A cDNA encoding a putative signal transducer protein, designated TRAF5, has been molecularly cloned. TRAF5 has a tumor necrosis factor receptor-associated factor (TRAF) domain in its carboxyl terminus and is most homologous to TRAF3, also known as CRAF1, CD40bp, or LAP-1, a previously identified CD40-associated factor. The amino terminus has a RING finger domain, a cluster of zinc fingers and a coiled-coil domain, which are also present in other members of the TRAF family protein except for TRAF1. In vitro binding assays revealed that TRAF5 associates with the cytoplasmic tail of CD40, but not with the cytoplasmic tail of tumor receptor factor receptor type 2, which associates with TRAF2. Based on analysis of the association between TRAF5 and various CD40 mutants, residues 230-269 of CD40 are required for the association with TRAF5. In contrast to TRAF3, overexpression of TRAF5 activates transcription factor nuclear factor kappa B. Furthermore, amino-terminally truncated forms of TRAF5 suppress the CD40-mediated induction of CD23 expression, as is the case with TRAF3. These results suggest that TRAF5 and TRAF3 could be involved in both common and distinct signaling pathways emanating from CD40.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Zn(Scys)4 unit is present in numerous proteins, where it assumes structural, regulatory, or catalytic roles. The same coordination is found naturally around iron in rubredoxins, several structures of which have been refined at resolutions of, or near to, 1 A. The fold of the small protein rubredoxin around its metal ion is an excellent model for many zinc finger proteins. Zn-substituted rubredoxin and its Fe-containing counterpart were both obtained as the products of the expression in Escherichia coli of the rubredoxin-encoding gene from Clostridium pasteurianum. The structures of both proteins have been refined with an anisotropic model at atomic resolution (1.1 A, R = 8.3% for Fe-rubredoxin, and 1.2 A, R = 9.6% for Zn-rubredoxin) and are very similar. The most significant differences are increased lengths of the M-S bonds in Zn-rubredoxin (average length, 2.345 A) as compared with Fe-rubredoxin (average length, 2.262 A). An increase of the CA-CB-SG-M dihedral angles involving Cys-6 and Cys-39, the first cysteines of each of the Cys-Xaa-Xaa-Cys metal binding motifs, has been observed. Another consequence of the replacement of iron by zinc is that the region around residues 36-46 undergoes larger displacements than the remainder of the polypeptide chain. Despite these changes, the main features of the FeS4 site, namely a local 2-fold symmetry and the characteristic network of N-H...S hydrogen bonds, are conserved in the ZnS4 site. The Zn-substituted rubredoxin provides the first precise structure of a Zn(Scys)4 unit in a protein. The nearly identical fold of rubredoxin around iron or zinc suggests that at least in some of the sites where the metal has mainly a structural role-e.g., zinc fingers-the choice of the relevant metal may be directed by its cellular availability and mobilization processes rather than by its chemical nature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Wilms tumor suppressor gene WT1 is implicated in the ontogeny of genito-urinary abnormalities, including Denys-Drash syndrome and Wilms tumor of the kidney. WT1 encodes Kruppel-type zinc finger proteins that can regulate the expression of several growth-related genes, apparently by binding to specific DNA sites located within 5' untranslated leader regions as well as 5' promoter sequences. Both WT1 and a closely related early growth response factor, EGR1, can bind the same DNA sequences from the mouse gene encoding insulin-like growth factor 2 (Igf-2). We report that WT1, but not EGR1, can bind specific Igf-2 exonic RNA sequences, and that the zinc fingers are required for this interaction. WT1 zinc finger 1, which is not represented in EGR1, plays a more significant role in RNA binding than zinc finger 4, which does have a counterpart in EGR1. Furthermore, the normal subnuclear localization of WT1 proteins is shown to be RNase, but not DNase, sensitive. Therefore, WT1 might, like the Kruppel-type zinc finger protein TFIIIA, regulate gene expression by both transcriptional and posttranscriptional mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several disulfide benzamides have been shown to possess wide-spectrum antiretroviral activity in cell culture at low micromolar to submicromolar concentrations, inhibiting human immunodeficiency virus (HIV) type 1 (HIV-1) clinical and drug-resistant strains along with HIV-2 and simian immunodeficiency virus [Rice, W. G., Supko, J. G., Malspeis, L., Buckheit, R. W., Jr., Clanton, D., Bu, M., Graham, L., Schaeffer, C. A., Turpin, J. A., Domagala, J., Gogliotti, R., Bader, J. P., Halliday, S. M., Coren, L., Sowder, R. C., II, Arthur, L. O. & Henderson, L. E. (1995) Science 270, 1194-1197]. Rice and coworkers have proposed that the compounds act by "attacking" the two zinc fingers of HIV nucleocapsid protein. Shown here is evidence that low micromolar concentrations of the anti-HIV disulfide benzamides eject zinc from HIV nucleocapsid protein (NCp7) in vitro, as monitored by the zinc-specific fluorescent probe N-(6-methoxy-8-quinoyl)-p-toluenesulfonamide (TSQ). Structurally similar disulfide benzamides that do not inhibit HIV-1 in culture do not eject zinc, nor do analogs of the antiviral compounds with the disulfide replaced with a methylene sulfide. The kinetics of NCp7 zinc ejection by disulfide benzamides were found to be nonsaturable and biexponential, with the rate of ejection from the C-terminal zinc finger 7-fold faster than that from the N-terminal. The antiviral compounds were found to inhibit the zinc-dependent binding of NCp7 to HIV psi RNA, as studied by gel-shift assays, and the data correlated well with the zinc ejection data. Anti-HIV disulfide benzamides specifically eject NCp7 zinc and abolish the protein's ability to bind psi RNA in vitro, providing evidence for a possible antiretroviral mechanism of action of these compounds. Congeners of this class are under advanced preclinical evaluation as a potential chemotherapy for acquired immunodeficiency syndrome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The homeodomain is a 60-amino acid module which mediates critical protein-DNA and protein-protein interactions for a large family of regulatory proteins. We have used structure-based design to analyze the ability of the Oct-1 homeodomain to nucleate an enhancer complex. The Oct-1 protein regulates herpes simplex virus (HSV) gene expression by participating in the formation of a multiprotein complex (C1 complex) which regulates alpha (immediate early) genes. We recently described the design of ZFHD1, a chimeric transcription factor containing zinc fingers 1 and 2 of Zif268, a four-residue linker, and the Oct-1 homeodomain. In the presence of alpha-transinduction factor and C1 factor, ZFHD1 efficiently nucleates formation of the C1 complex in vitro and specifically activates gene expression in vivo. The sequence specificity of ZFHD1 recruits C1 complex formation to an enhancer element which is not efficiently recognized by Oct-1. ZFHD1 function depends on the recognition of the Oct-1 homeodomain surface. These results prove that the Oct-1 homeodomain mediates all the protein-protein interactions that are required to efficiently recruit alpha-transinduction factor and C1 factor into a C1 complex. The structure-based design of transcription factors should provide valuable tools for dissecting the interactions of DNA-bound domains in other regulatory circuits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The glass gene is required for proper photo-receptor differentiation during development of the Drosophila eye glass codes for a DNA-binding protein containing five zinc fingers that we show is a transcriptional activator. A comparison of the sequences of the glass genes from two species of Drosophila and a detailed functional domain analysis of the Drosophila melanogaster glass gene reveal that both the DNA-binding domain and the transcriptional-activation domain are highly conserved between the two species. Analysis of the DNA-binding domain of glass indicates that the three carboxyl-terminal zinc fingers alone are necessary and sufficient for DNA binding. We also show that a deletion mutant of glass containing only the DNA-binding domain can behave in a dominant-negative manner both in vivo and in a cell culture assay that measures transcriptional activation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During my PhD course, I focused my research on antimicrobial peptides (AMPs), in particular on the aspects of their computational design and development. This work led to the development of a new family of AMPs that I designed, starting from the amino acid sequence of a snake venom toxin, the cardiotoxin 1 (CTX-1) of Naja atra. Naja atra atra cardiotoxin 1, produced by Chinese cobra snakes belonging to Elapidae family, is included in the three-finger toxin family and exerts high cytotoxicity and antimicrobial activity too. This toxin family is characterized by specific folding of three beta-sheet loops (“fingers”) extending from the central core and by four conserved disulfide bridges. Using as template the first loop of this toxin, different sequences of 20 amino acids linear cationic peptides have been designed in order to avoid toxic effects but to maintain and strengthen the antimicrobial activity. As a result, the sequence NCP-0 (Naja Cardiotoxin Peptide-0) was designed as ancestor and subsequently other 4 variant sequences of NCP0 were developed. These variant sequences have shown microbicidal activity towards a panel of reference strains of Gram-positive and Gram-negative bacteria, fungi and an enveloped virus. In particular, the sequence designed as NCP-3 (Naja Cardiotoxin Peptide-3) and its variants NCP-3a and NCP-3b have shown the best antimicrobial activity together with low cytotoxicity against eukaryotic cells and low hemolytic activity. Bactericidal activity has been demonstrated by minimum bactericidal concentration (MBC) assay at values below 10 μg/ml for Pseudomonas aeruginosa ATCC 27853, Acinetobacter baumannii ( clinical isolates), Moraxella catharralis ATCC 25238, MRSA ATCC 43400, while towards Staphylococcus aureus ATCC 25923, Enterococcus hirae ATCC 10541 and Streptococcus agalactiae ATCC 13813 the bactericidal activity was demonstrated even below 1.6 μg/ml concentration. This potent antimicrobial activity was confirmed even for unicellular fungi Candida albicans, Candida glabrata and Malassezia pachydermatis (MBC 32.26-6.4 μg/ml), and also against the fast-growing mycobacteria Mycobacterium smegmatis DSMZ 43756 and Mycobacterium fortuitum DSMZ 46621 (MBC 100 μg/ml). Moreover, NCP-3 has shown a virucidal activity on the enveloped virus Bovine Herpesvirus 1 (BoHV1) belonging to herpesviridae family. The bactericidal activity is maintained in a high salt concentration (125 and 250 mM NaCl) medium and PB +20% Mueller Hinton Medium for E. coli, MRSA and Pseudomonas aeruginosa reference strains. Considering these in vitro obtained data, we propose NCP-3 and its variants NCP-3a and NCP-3b as promising antimicrobial candidates. For this reason, the whole novel AMPs family has been protected by a national patent (n°102015000015951).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New low cost sensors and open free libraries for 3D image processing are making important advances in robot vision applications possible, such as three-dimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a novel method for recognizing and tracking the fingers of a human hand is presented. This method is based on point clouds from range images captured by a RGBD sensor. It works in real time and it does not require visual marks, camera calibration or previous knowledge of the environment. Moreover, it works successfully even when multiple objects appear in the scene or when the ambient light is changed. Furthermore, this method was designed to develop a human interface to control domestic or industrial devices, remotely. In this paper, the method was tested by operating a robotic hand. Firstly, the human hand was recognized and the fingers were detected. Secondly, the movement of the fingers was analysed and mapped to be imitated by a robotic hand.