839 resultados para Financial accelerator
Resumo:
Commentators suggest that to survive in developed economies manufacturing firms have to move up the value chain, innovating and creating ever more sophisticated products and services, so they do not have to compete on the basis of cost. While this strategy is proving increasingly popular with policy makers and academics there is limited empirical evidence to explore the extent to which it is being adopted in practice. And if so, what the impact of this servitization of manufacturing might be. This paper seeks to fill a gap in the literature by presenting empirical evidence on the range and extent of servitization. Data are drawn from the OSIRIS database on 10,028 firms incorporated in 25 different countries. The paper presents an analysis of these data which suggests that: [i] manufacturing firms in developed economies are adopting a range of servitization strategies-12 separate approaches to servitization are identified; [ii] these 12 categories can be used to extend the traditional three options for servitization-product oriented Product-Service Systems, use oriented Product-Service Systems and result oriented Product-Service Systems, by adding two new categories "integration oriented Product-Service Systems" and "service oriented Product-Service Systems"; [iii] while the manufacturing firms that have servitized are larger than traditional manufacturing firms in terms of sales revenues, at the aggregate level they also generate lower profits as a % of sales; [iv] these findings are moderated by firm size (measured in terms of numbers of employees). In smaller firms servitization appears to pay off while in larger firms it proves more problematic; and [v] there are some hidden risks associated with servitization-the sample contains a greater proportion of bankrupt servitized firms than would be expected. © Springer Science + Business Media, LLC 2009.
Resumo:
The Accelerator Driven Subcritical Reactor (ADSR) is one of the reactor designs proposed for future nuclear energy production. Interest in the ADSR arises from its enhanced and intrinsic safety characteristics, as well as its potential ability to utilize the large global reserves of thorium and to burn legacy actinide waste from other reactors and decommissioned nuclear weapons. The ADSR concept is based on the coupling of a particle accelerator and a subcritical core by means of a neutron spallation target interface. One of the candidate accelerator technologies receiving increasing attention, the Fixed Field Alternating Gradient (FFAG) accelerator, generates a pulsed proton beam. This paper investigates the impact of pulsed proton beam operation on the mechanical integrity of the fuel pin cladding. A pulsed beam induces repetitive temperature changes in the reactor core which lead to cyclic thermal stresses in the cladding. To perform the thermal analysis aspects of this study a code that couples the neutron kinetics of a subcritical core to a cylindrical geometry heat transfer model was developed. This code, named PTS-ADS, enables temperature variations in the cladding to be calculated. These results are then used to perform thermal fatigue analysis and to predict the stress-life behaviour of the cladding. © 2011 Elsevier Ltd. All rights reserved.
Resumo:
The accurate prediction of time-changing covariances is an important problem in the modeling of multivariate financial data. However, some of the most popular models suffer from a) overfitting problems and multiple local optima, b) failure to capture shifts in market conditions and c) large computational costs. To address these problems we introduce a novel dynamic model for time-changing covariances. Over-fitting and local optima are avoided by following a Bayesian approach instead of computing point estimates. Changes in market conditions are captured by assuming a diffusion process in parameter values, and finally computationally efficient and scalable inference is performed using particle filters. Experiments with financial data show excellent performance of the proposed method with respect to current standard models.
Resumo:
The field of nuclear medicine is reliant on radionuclides for medical imaging procedures and radioimmunotherapy (RIT). The recent shut-downs of key radionuclide producers have highlighted the fragility of the current radionuclide supply network, however. To ensure that nuclear medicine can continue to grow, adding new diagnostic and therapy options to healthcare, novel and reliable production methods are required. Siemens are developing a low-energy, high-current - up to 10MeV and 1mA respectively - accelerator. The capability of this low-cost, compact system for radionuclide production, for use in nuclear medicine procedures, has been considered.
Resumo:
To meet the requirements of providing high-intensity heavy ion beams the direct plasma injection scheme (DPIS) was proposed by a RIKEN-CNS-TIT collaboration. In this scheme a radio frequency quadrupole (RFQ) was joined directly with the laser ion source (LIS) without a low-energy beam transport (LEBT) line. To find the best design of the RFQ that will have short length, high transmission efficiency and small emittance growth, beam dynamics designs with equipartitioning design strategy and with matched-only design strategy have been performed, and a comparison of their results has also been done. Impacts of the input beam parameters on transmission efficiency are presented, too. (C) 2008 Elsevier B.V. All rights reserved.