981 resultados para Fin whale -- Northeast Pacific Ocean
Resumo:
Fifty-six samples of nannofossil ooze were collected from Core PC5794 in the northern equatorial Pacific at 5 em intervals. With the methods of mass spectrometer (VG354) and ICP, the Nd isotopic compositions (epsilon(Nd)(t)), Mn contents and Mg/Sr ratios of carbonate phase have been analyzed. CaCO3 contents of bulk sediments were obtained by dissolution of 0.5 mol/L HCl. Based on these data, the high-resolution epsilon(Nd)(t) profile of seawater in early Miocene with core depth(or time) have been established. The values of epsilon(Nd)(t) range from -6.2 to -2.97 and 4 fluctuation cycles existed during 24.06-22.02 Ma. 4 low epsilon(Nd)(t) values (about -6.4) correspond to high CaCO3 contents, which implicates that there were 4 cold epochs or 4 times of Antarctic Bottom Water activity. They occurred at the time of 24.06 Ma, 23.85 Ma, 22.88 Ma and 22.26 Ma, respectively. High epsilon(Nd)(t) values correspond to the high Mn contents and high values of Mg/Sr ratio, which indicates the existence of 4 intense hydrothermal activity periods during 24.06-22 Ma, the durations of them are 4.05-23.98 Ma, 23.69-23.15 Ma, 22.74-22.37 Ma and 22.06-22.02 Ma, respectively.
Resumo:
The noble gas nuclide abundances and isotopic ratios of the upmost layer of Fe-Mn crusts from the western and central Pacific Ocean have been determined. The results indicate that the He and Ar nuclide abundances and isotopic ratios can be classified into two types: low He-3/He-4 type and high He-3/He-4 type. The low He-3/He-4 type is characterized by high He-4 abundances of 191x10(-9) cm(3.)STP(.)g(-1) on average, with variable He-4, Ne-20 and Ar-40 abundances in the range (42.8-421)x10(-9) cm(3.)STP(.)g(-1), (5.40-141)x10(-9)cm(3.)STP(.)g(-1), and (773-10976)x10(-9) cm(3.)STP(.)g(-1), respectively. The high He-3/He-4 samples are characterized by low He-4 abundances of 11.7x10(-9) cm(3.)STP(.)g(-1) on average, with He-4, Ne-20 and Ar-40 abundances in the range of (7.57-17.4)x10(-9) cm(3.)STP(.)g(-1), (110.4-25.5)x10(-9) cm(3.)STP(.)g(-1) and (5354-9050)x10(-9) cm(3.)STP(.)g(-1), respectively. The low He-3/He-4 samples have He-3/He-4 ratios (with RIRA ratios of 2.04-2.92) which are lower than those of MORB (R/R-A=8 +/- 1) and Ar-40/Ar-36 ratios (447-543) which are higher than those of air (295.5). The high He-3/He-4 samples have He-3/He-4 ratios (with R/R-A ratios of 10.4-12.0) slightly higher than those of MORB (R/R-A=8 +/- 1) and Ar-40/Ar-36 ratios (293-299) very similar to those of air (295.5). The Ne isotopic ratios (Ne-20/Ne-22 and Ne-21/Ne-22 ratios of 10.3-10.9 and 0.02774-0.03039, respectively) and the Ar-38/Ar-36 ratios (0.1886-0.1963) have narrow ranges which are very similar to those of air (the Ne-20/Ne-22, Ne-21/Ne-22, Ar-38/Ar-36 ratios of 9.80, 0.029 and 0.187, respectively), and cannot be differentiated into different groups. The noble gas nuclide abundances and isotopic ratios, together with their regional variability, suggest that the noble gases in the Fe-Mn crusts originate primarily from the lower mantle. The low He-3/He-4 type and high He-3/He-4 type samples have noble gas characteristics similar to those of HIMU (High U/Pb Mantle)- and EM (Enriched Mantle)-type mantle material, respectively. The low He-3/He-4 type samples with HIMU-type noble gas isotopic ratios occur in the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain and the Mid-Pacific Seamounts whereas the high He-3/He-4 type samples with EM-type noble gas isotopic ratios occur in the Line Island Chain. This difference in noble gas characteristics of these crust types implies that the Magellan Seamounts, Marcus-Wake Seamounts, Marshall Island Chain, and the Mid-Pacific Seamounts originated from HIMU-type lower mantle material whereas the Line Island Chain originated from EM-type lower mantle material. This finding is consistent with variations in the Pb-isotope and trace element signatures in the seamount lavas. Differences in the mantle surce may therefore be responsible for variations in the noble gas abundances and isotopic ratios in the Fe-Mn crusts. Mantle degassing appears to be the principal factor controlling noble gas isotopic abundances in Fe-Mn crusts. Decay of radioactive isotopes has a negligible influence on the nuclide abundances and isotopic ratios of noble gases in these crusts on the timescale of their formation.
Resumo:
Living planktonic foraminifera (PF) samples from the Okinawa Trough of the northwestern Pacific Ocean were taken for DNA analysis. The SSU rDNA sequences of two PF species, Globigerina sp. and Pulleniatina obliquiloculata collected at Station WP01, were obtained and compared with those from the southwestern Pacific Ocean. Only small differences (< 0.7%-1.2% for P. obliquiloculata, and 0.3% for Globigerina sp.) were found between samples from the north- and south-western Pacific Ocean areas and this molecular evidence supported that these micropaleontological species are the same species, which implies that the West Pacific Ocean circulation system influences the planktonic foraminiferal gene communication.
Resumo:
The interannual anomalies of horizontal heat advection in the surface mixed layer over the equatorial Pacific Ocean in an assimilation experiment are studied and compared with existing observational analyses. The assimilation builds upon a hindcast study that has produced a good simulation of the observed equatorial currents and optimizes the simulation of the Reynolds sea surface temperature (SST) data. The comparison suggests that the assimilation has improved the simulation of the interannual horizontal heat advection of the surface mixed layer significantly. During periods of interrupted current measurements, the assimilation is shown to produce more meaningful anomalies of the heat advection than the interpolation of the observational data does. The assimilation also shows that the eddy heat flux due to the correlation between high-frequency current and SST variations, which is largely overlooked by the existing observational analyses, is important for the interannual SST balance over the equatorial Pacific. The interannual horizontal heat advection anomalies are found to be sensitive to SST errors where oceanic currents are strong, which is a challenge for ENSO prediction. The study further suggests that the observational analyses of the tropical SST balance based on the TAO and the Reynolds SST data contain significant errors due to the large gradient errors in the Reynolds SST data, which are amplified into the advection anomalies by the large equatorial currents.
Resumo:
An assimilation data set based on the GFDL MOM3 model and the NODC XBT data set is used to examine the circulation in the western tropical Pacific and its seasonal variations. The assimilated and observed velocities and transports of the mean circulation agree well. Transports of the North Equatorial Current (NEC), Mindanao Current (MC), North Equatorial Countercurrent (NECC) west of 140degreesE and Kuroshio origin estimated with the assimilation data display the seasonal cycles, roughly strong in boreal spring and weak in autumn, with a little phase difference. The NECC transport also has a semi-annual fluctuation resulting from the phase lag between seasonal cycles of two tropical gyres' recirculations. Strong in summer during the southeast monsoon period, the seasonal cycle of the Indonesian throughflow (ITF) is somewhat different from those of its upstreams, the MC and New Guinea Coastal Current (NGCC), implying the monsoon's impact on it.
Resumo:
Previous research has defined the index of the Indian-Pacific thermodynamic anomaly joint mode (IPTAJM) and suggested that the winter IPTAJM has an important impact on summer rainfall over China. However, the possible causes for the interannual and decadal variability of the IPTAJM are still unclear. Therefore, this work investigates zonal displacements of both the western Pacific warm pool (WPWP) and the eastern Indian Ocean warm pool (EIOWP). The relationships between the WPWP and the EIOWP and the IPTAJM are each examined, and then the impacts of the zonal wind anomalies over the equatorial Pacific and Indian Oceans on the IPTAJM are studied. The WPWP eastern edge anomaly displays significant interannual and decadal variability and experienced a regime shift in about 1976 and 1998, whereas the EIOWP western edge exhibits only distinct interannual variability. The decadal variability of the IPTAJM may be mainly caused by both the zonal migration of the WPWP and the 850 hPa zonal wind anomaly over the central equatorial Pacific. On the other hand, the zonal migrations of both the WPWP and the EIOWP and the zonal wind anomalies over the central equatorial Pacific and the eastern equatorial Indian Ocean may be all responsible for the interannual variability of the IPTAJM.