932 resultados para Fiber Reinforced Polymer
Resumo:
The effect of thermal-shock cycles on the mechanical properties of fiber-metal laminates (FMLs) has been evaluated. FML plates were composed by two AA2024 Al sheets (1.6 mm thick) and one composite ply formed by two layers of unidirectional glass fiber epoxy prepreg and two layers of epoxy adhesive tape of glass fiber reinforced epoxy adhesive. The set was manufactured by hand layup and typical vacuum bag technique. The curing cycle was in autoclave at 125 +/- 5 degrees C for 90 min and an autoclave pressure of 400 kPa. FML coupons taken from the manufactured plate were submitted to temperature variations between -50 and +80 degrees C, with a fast transition between these temperatures. Tensile and interlaminar shear strength were evaluated on samples after 1000 and 2000 cycles, and compared to nonexposed samples. 2000 Cycles corresponds to typical C Check interval for commercial aircraft maintenance programs. It was observed that the thermal-shock cycles did not result in significant microstructural changes on the FML, particularly on the composite ply. Similarly, no appreciable effect on the mechanical properties of FML was observed by the thermal-shock cycles. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluated the influence of the cementation length of glass fiber-reinforced composite (FRC) on the fatigue resistance of bovine teeth restored with an adhesively cemented FRC. Thirty roots of single-rooted bovine teeth were allocated to 3 groups (n = 10), according to the ratio of crown length/root length (post cementation length): group 1 = 2/3, group 2 = 1/2, and group 3 = 1/1. The roots were prepared, the fiber posts (FRC Postec Plus) were cemented, and the specimens were submitted to 2 million mechanical cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture, and data were submitted to statistical analysis. All specimens were resistant to fatigue. Taking into account the methodology and results of this study, the evaluated fiber posts can be cemented based on the ratio of crown/root at 1/1. Further clinical studies must be conducted to verify this ratio.
Resumo:
Purpose: To evaluate the pullout strength of a glass fiber-reinforced composite post (glass FRC) cemented with three different adhesive systems and one resin cement. The null hypothesis was that pullout strengths yielded by the adhesive systems are similar. Materials and Methods: Thirty bovine teeth were selected. The size of the specimens was standardized at 16 mm by sectioning off the coronal portion and part of the root. The specimens were divided into three groups, according to the adhesive system, which were applied following the manufacturers' instructions: G1, ScotchBond Multi-Purpose Plus; G2, Single Bond; G3, Tyrian SPE/One-Step Plus. The glass FRCs (Reforpost) were etched with 37% H3PO4 for 1 min and silanized (Porcelain Primer). Thereafter, they were cemented with the dual resin cement En-Force. The specimens were stored for 24 h, attached to an adapted device, and submitted to the pullout test in a universal testing machine (1 mm/min). The data were submitted to the one-way ANOVA and Tukey's test (α = 0.05). Results: G1 (30.2 ± 5.8 Kgf) displayed the highest pullout strength (p < 0.001) when compared to G2 (18.6 ± 5.8 Kgf) and G3 (14.3 ± 5.8 Kgf), which were statistically similar. Analysis of the specimens revealed that all failures occurred between the adhesive system and the root dentin (pullout of the post cement), regardless of group. Conclusion: The multiple-bottle, total-etch adhesive system provided higher pullout strength of the glass FRC when compared to the single-bottle, total-etch, and single-step self-etching adhesive systems. The null hypothesis was rejected (p < 0.001).
Resumo:
Purpose: Fiber-reinforced composite (FRC) posts can be air-abraded to obtain good attachment to the resin cement. This study tested the effect of silica coating on the flexural strength of carbon, opaque, and translucent quartz FRC posts. Materials and Methods: Six experimental groups of FRC posts (n = 10 per group) were tested, either as received from the manufacturer or after chairside silica coating (30-μm CoJet-Sand). Results: There was no significant difference in the flexural strength of nonconditioned (504 to 525 MPa) and silica-coated (514 to 565 MPa) specimens (P > .05) (analysis of variance). The type of post did have a significant effect on flexural strength (P < .05). Conclusion: Chairside silica coating did not affect the flexural strength of both carbon and quartz FRC posts.
Resumo:
Purpose: To test the bond strength between a quartz-fiber-reinforced composite post (FRC) and a resin cement. The null hypothesis was that the bond strength can be increased by using a chairside tribochemical silica-coating system. Materials and Methods: Thirty quartz-FRCs (Light-Post) were divided into 3 groups according to the post surface treatment: G1) Conditioning with 32% phosphoric acid (1 min), applying a silane coupling agent; G2) etching with 10% hydrofluoric acid (1 min), silane application; G3) chairside tribochemical silica coating method (CoJet System): air abrasion with 30-μ SiO x-modified Al2O3 particles, silane application. Thereafter, the posts were cemented into a cylinder (5 mm diameter, 15 mm height) with a resin cement (Duo-Link). After cementation, the specimens were stored in distilled water (37°C/24 h) and sectioned along the x and y axes with a diamond wheel under cooling (Lab-cut 1010) to create nontrimmed bar specimens. Each specimen was attached with cyanoacrylate to an apparatus adapted for the microtensile test. Microtensile testing was conducted on a universal testing machine (1 mm/min). The data obtained were submitted to the one-way ANOVA and Tukey test (α = 0.05). Results: A significant influence of the conditioning methods was observed (p < 0.0001). The bond strength of G3 (15.14 ± 3.3) was significantly higher than the bond strengths of G1 (6.9 ± 2.3) and G2 (12.60 ± 2.8) (p = 0.000106 and p = 0.002631, respectively). Notwithstanding the groups, all the tested specimens showed adhesive failure between the resin cement and FRC. Conclusion: The chairside tribochemical system yielded the highest bond strength between resin cement and quartz-fiber post. The null hypothesis was accepted (p < 0.0001).
Resumo:
The glued-laminated lumber (glulam) technique is an efficient process for making rational use of wood. Fiber-Reinforced Polymers (FRPs) associated with glulam beams provide significant gains in terms of strength and stiffness, and also alter the mode of rupture of these structural elements. In this context, this paper presents a theoretical model for designing reinforced glulam beams. The model allows for the calculation of the bending moment, the hypothetical distribution of linear strains along the height of the beam, and considers the wood has a linear elastic fragile behavior in tension parallel to the fibers and bilinear in compression parallel to the fibers, initially elastic and subsequently inelastic, with a negative decline in the stress-strain diagram. The stiffness was calculated by the transformed section method. Twelve non-reinforced and fiberglass reinforced glulam beams were evaluated experimentally to validate the proposed theoretical model. The results obtained indicate good congruence between the experimental and theoretical values.
Resumo:
This study aimed to evaluate the influence of cement thickness on the bond strength of a fiber-reinforced composite (FRC) post system to the root dentin. Eighteen single-rooted human teeth were decoronated (length: 16 mm), the canals were prepared, and the specimens were randomly allocated to 2 groups (n = 9): group 1 (low cement thickness), in which size 3 FRC posts were cemented using adhesive plus resin cement; and group 2 (high cement thickness), in which size 1 FRC posts were cemented as in group 1. Specimens were sectioned, producing 5 samples (thickness: 1.5 mm). For cement thickness evaluation, photographs of the samples were taken using an optical microscope, and the images were analyzed. Each sample was tested in push-out, and data were statistically analyzed. Bond strengths of groups 1 and 2 did not show significant differences (P = .558), but the cement thicknesses for these groups were significantly different (P < .0001). The increase in cement thickness did not significantly affect the bond strength (r2 = 0.1389, P = .936). Increased cement thickness surrounding the FRC post did not impair the bond strength.
Resumo:
This study evaluated the effect of post surface conditioning on the fatigue resistance of bovine teeth restored with resin-bonded fiber-reinforced composite (FRC). Root canals of 20 single-rooted bovine teeth (16 mm long) were prepared to 12 mm using a preparation drill of a double-tapered fiber post system. Using acrylic resin, each specimen was embedded (up to 3.0 mm from the cervical part of the specimen) in a PVC cylinder and allocated into one of two groups (n = 10) based on the post surface conditioning method: acid etching plus silanization or tribochemical silica coating (30 μm SiOx + silanization). The root canal dentin was etched (H2PO3 for 30 seconds), rinsed, and dried. A multi-step adhesive system was applied to the root dentin and the fiber posts were cemented with resin cement. The specimens were submitted to one million fatigue cycles. After fatigue testing, a score was given based on the number of fatigue cycles until fracture. All of the specimens were resistant to fatigue. No fracture of the root or the post and no loss of retention of the post were observed. The methodology and the results of this study indicate that tribochemical silica coating and acid etching performed equally well when dynamic mechanical loading was used.
Resumo:
Customized glass fiber posts that is well adjusted into the root canal and have mechanical properties similar to those of dentin may be a suitable treatment for severely compromised endodontically treated teeth. This article reports a 3-year follow up of severely damaged endodontically treated teeth restored with unidirectional fiber glass customized post and core system instead of a conventional fiber post. The fabrication of this glass fiber customized post is a simple technique, providing an increased volume of fibers into the root canal, and an adequate polymerization of the post-core system. Over a three-year period, the treatments demonstrated good clinical and radiographic characteristics, with no fracture or loss of the post and/or crown. This technique can be considered effective, less invasive, and suitable for restore endodontically treated teeth.
Resumo:
The aim of this paper was to evaluate the effect of hybridizing glass and curaua fibers on the mechanical properties of their composites. These composites were produced by hot compression molding, with distinct overall fiber volume fraction, being either pure curaua fiber, pure glass fiber or hybrid. The mechanical characterization was performed by tensile, flexural, short beam, Iosipescu and also nondestructive testing. From the obtained results, it was observed that the tensile strength and modulus increased with glass fiber incorporation and for higher overall fiber volume fraction (%Vf). The short beam strength increased up to %Vf of 30 vol.%, evidencing a maximum in terms of overall fiber/matrix interface and composite quality. Hybridization has been successfully applied to vegetable/synthetic fiber reinforced polyester composites in a way that the various properties responded satisfactorily to the incorporation of a third component. © 2013 Published by Elsevier Ltd. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this paper is to study the feasibility of using cellulose fibers obtained from an agricultural waste, hemp core (Cannabis Sativa L), through different new environmental friendly cooking processes for fiber-cement production. The physical and mechanical properties of the fiber reinforced concrete, which depend on the nature and morphology of the fibers, matrix properties and the interactions between them, must be kept between the limits required for its application. Therefore, the morphology of the fibers and how its use affects the flocculation, retention and drainage processes in the fiber-cement manufacture, and the mechanical and physical properties of the fiber-cement product have been studied. The use of pulp obtained by means of the hemp core cooking in ethanolamine at 60% concentration at 180 degrees C during 90 min resulted in the highest solids retention and the best mechanical properties among the studied hemp core pulps. (C) 2012 Elsevier B.V. All rights reserved.