843 resultados para Feature grouping


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volcanic rocks from the northern and middle Okinawa Trough were dated by uranium-series dating method. Differential fractions using magnetic procedure were designed to separate samples. New report on the ages and isotopic data of rocks in the northern trough (especially black pumice) was discussed. Based on the uranium dates and Sr-Nd isotopic ratio, magmatic evolution process of the Okinawa Trough was noted. Firstly, there have been wide silicic volcanic activities in the Okinawa Trough from late Pleistocene to present, and the volcanic rocks can be divided into three subgroups. Secondly, magma generally came from PREMA source area under the Okinawa Trough. Magmatic evolution in the northern trough was similar to the middle, but different to the south. Finally, volcanic activities indicated that opening of the southern Okinawa Trough did not happen due to the collision between Luson Arc and Eurasian Plate until the early Pleistocene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Organic carbon (OC) in definitely small area sediments(according to marine dimension)off the Huanghe River Estuary is investigated in order to evaluate the feature of regional difference of physical and chemical properties in marginal sea sediments. The distributions of OC in sediments with natural grain size and the relationship with the pH, Eh,Es and Fe3+/Fe2+ are discussed. In addition,OC decomposition rates in surfacial/subsurfacial sediments are estimated. OC concentrations range from 0.26% to 1.8%(wt)in the study area. Significant differences in OC content and in horizontal distribution as well as various trends in surfacial/subsurfacial sediments exhibit the feature of regional difference remarkably in marginal sea sediments. The complicated distribution of OC in surface sediments is due to the influence of bacterial activity and abundance, bioturbation of benthos and physical disturbance. The OC decomposition rate constant in surfacial/subsurfacial sediments ranges from 0.0097 to 0.076 a(-1) and the relatively high values may be mainly related to bacteria that are mainly responsible for OC mineralization;meio-and macrofauna affect OC degradation both directly, through feeding on it, and indirectly through bioturbation and at the same time coarse sediments are also disadvantageous to OC preservation. In almost all the middle and bottom sediments the contents of OC decrease with the increase of deposition depth, which indicates that mineralization of OC in the middle and bottom sediments has occurred via processes like SO42- reduction and Fe-oxide reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duplications and rearrangements of coding genes are major themes in the evolution of mitochondrial genomes, bearing important consequences in the function of mitochondria and the fitness of organisms. Yu et al. (BMC Genomics 2008, 9: 477) reported the complete mt genome sequence of the oyster Crassostrea hongkongensis (16,475 bp) and found that a DNA segment containing four tRNA genes (trnK(1), trnC, trnQ(1) and trnN), a duplicated (rrnS) and a split rRNA gene (rrnL5') was absent compared with that of two other Crassostrea species. It was suggested that the absence was a novel case of "tandem duplication-random loss" with evolutionary significance. We independently sequenced the complete mt genome of three C. hongkongensis individuals, all of which were 18,622 bp and contained the segment that was missing in Yu et al.'s sequence. Further, we designed primers, verified sequences and demonstrated that the sequence loss in Yu et al.'s study was an artifact caused by placing primers in a duplicated region. The duplication and split of ribosomal RNA genes are unique for Crassostrea oysters and not lost in C. hongkongensis. Our study highlights the need for caution when amplifying and sequencing through duplicated regions of the genome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of matching model and sensory data features in the presence of geometric uncertainty, for the purpose of object localization and identification. The problem is to construct sets of model feature and sensory data feature pairs that are geometrically consistent given that there is uncertainty in the geometry of the sensory data features. If there is no geometric uncertainty, polynomial-time algorithms are possible for feature matching, yet these approaches can fail when there is uncertainty in the geometry of data features. Existing matching and recognition techniques which account for the geometric uncertainty in features either cannot guarantee finding a correct solution, or can construct geometrically consistent sets of feature pairs yet have worst case exponential complexity in terms of the number of features. The major new contribution of this work is to demonstrate a polynomial-time algorithm for constructing sets of geometrically consistent feature pairs given uncertainty in the geometry of the data features. We show that under a certain model of geometric uncertainty the feature matching problem in the presence of uncertainty is of polynomial complexity. This has important theoretical implications by demonstrating an upper bound on the complexity of the matching problem, an by offering insight into the nature of the matching problem itself. These insights prove useful in the solution to the matching problem in higher dimensional cases as well, such as matching three-dimensional models to either two or three-dimensional sensory data. The approach is based on an analysis of the space of feasible transformation parameters. This paper outlines the mathematical basis for the method, and describes the implementation of an algorithm for the procedure. Experiments demonstrating the method are reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new method of grouping edges in order to recognize objects. This grouping method succeeds on images of both two- and three- dimensional objects. So that the recognition system can consider first the collections of edges most likely to lead to the correct recognition of objects, we order groups of edges based on the likelihood that a single object produced them. The grouping module estimates this likelihood using the distance that separates edges and their relative orientation. This ordering greatly reduces the amount of computation required to locate objects and improves the system's robustness to error.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a unifying framework in which "object-independent" modes of variation are learned from continuous-time data such as video sequences. These modes of variation can be used as "generators" to produce a manifold of images of a new object from a single example of that object. We develop the framework in the context of a well-known example: analyzing the modes of spatial deformations of a scene under camera movement. Our method learns a close approximation to the standard affine deformations that are expected from the geometry of the situation, and does so in a completely unsupervised (i.e. ignorant of the geometry of the situation) fashion. We stress that it is learning a "parameterization", not just the parameter values, of the data. We then demonstrate how we have used the same framework to derive a novel data-driven model of joint color change in images due to common lighting variations. The model is superior to previous models of color change in describing non-linear color changes due to lighting.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information representation is a critical issue in machine vision. The representation strategy in the primitive stages of a vision system has enormous implications for the performance in subsequent stages. Existing feature extraction paradigms, like edge detection, provide sparse and unreliable representations of the image information. In this thesis, we propose a novel feature extraction paradigm. The features consist of salient, simple parts of regions bounded by zero-crossings. The features are dense, stable, and robust. The primary advantage of the features is that they have abstract geometric attributes pertaining to their size and shape. To demonstrate the utility of the feature extraction paradigm, we apply it to passive navigation. We argue that the paradigm is applicable to other early vision problems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Automated assembly of mechanical devices is studies by researching methods of operating assembly equipment in a variable manner; that is, systems which may be configured to perform many different assembly operations are studied. The general parts assembly operation involves the removal of alignment errors within some tolerance and without damaging the parts. Two methods for eliminating alignment errors are discussed: a priori suppression and measurement and removal. Both methods are studied with the more novel measurement and removal technique being studied in greater detail. During the study of this technique, a fast and accurate six degree-of-freedom position sensor based on a light-stripe vision technique was developed. Specifications for the sensor were derived from an assembly-system error analysis. Studies on extracting accurate information from the sensor by optimally reducing redundant information, filtering quantization noise, and careful calibration procedures were performed. Prototype assembly systems for both error elimination techniques were implemented and used to assemble several products. The assembly system based on the a priori suppression technique uses a number of mechanical assembly tools and software systems which extend the capabilities of industrial robots. The need for the tools was determined through an assembly task analysis of several consumer and automotive products. The assembly system based on the measurement and removal technique used the six degree-of-freedom position sensor to measure part misalignments. Robot commands for aligning the parts were automatically calculated based on the sensor data and executed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proposed research will focus on developing a novel approach to solve Software Service Evolution problems in Computing Clouds. The approach will support dynamic evolution of the software service in clouds via a set of discovered evolution patterns. An initial survey informed us that such an approach does not exist yet and is in urgent need. Evolution Requirement can be classified into evolution features; researchers can describe the whole requirement by using evolution feature typology, the typology will define the relation and dependency between each features. After the evolution feature typology has been constructed, evolution model will be created to make the evolution more specific. Aspect oriented approach can be used for enhance evolution feature-model modularity. Aspect template code generation technique will be used for model transformation in the end. Product Line Engineering contains all the essential components for driving the whole evolution process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X. Wang, J. Yang, X. Teng, W. Xia, and R. Jensen. Feature Selection based on Rough Sets and Particle Swarm Optimization. Pattern Recognition Letters, vol. 28, no. 4, pp. 459-471, 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Q. Shen. Rough feature selection for intelligent classifiers. LNCS Transactions on Rough Sets, 7:244-255, 2007.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X. Wang, J. Yang, R. Jensen and X. Liu, 'Rough Set Feature Selection and Rule Induction for Prediction of Malignancy Degree in Brain Glioma,' Computer Methods and Programs in Biomedicine, vol. 83, no. 2, pp. 147-156, 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

R. Jensen, 'Performing Feature Selection with ACO. Swarm Intelligence and Data Mining,' A. Abraham, C. Grosan and V. Ramos (eds.), Studies in Computational Intelligence, vol. 34, pp. 45-73. 2006.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feature selection aims to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory (RST) has been used as such a tool with much success. RST enables the discovery of data dependencies and the reduction of the number of attributes contained in a dataset using the data alone, requiring no additional information. This chapter describes the fundamental ideas behind RST-based approaches and reviews related feature selection methods that build on these ideas. Extensions to the traditional rough set approach are discussed, including recent selection methods based on tolerance rough sets, variable precision rough sets and fuzzy-rough sets. Alternative search mechanisms are also highly important in rough set feature selection. The chapter includes the latest developments in this area, including RST strategies based on hill-climbing, genetic algorithms and ant colony optimization.