946 resultados para Fast virtual stenting method
Resumo:
Intraoperative cardiac imaging plays a key role during transcatheter aortic valve replacement. In recent years, new techniques and new tools for improved image quality and virtual navigation have been proposed, in order to simplify and standardize stent valve positioning and implantation. But routine performance of the new techniques may require major economic investments or specific knowledge and skills and, for this reason, they may not be accessible to the majority of cardiac centres involved in transcatheter valve replacement projects. Additionally, they still require injections of contrast medium to obtain computed images. Therefore, we have developed and describe here a very simple and intuitive method of positioning balloon-expandable stent valves, which represents the evolution of the 'dumbbell' technique for echocardiography-guided transcatheter valve replacement without angiography. This method, based on the partial inflation of the balloon catheter during positioning, traps the crimped valve in the aortic valve orifice and, consequently, very near to the ideal landing zone. It does not require specific echocardiographic knowledge; it does not require angiographies that increase the risk of postoperative kidney failure in elderly patients, and it can be also performed in centres not equipped with a hybrid operating room.
Resumo:
In this paper, we develop numerical algorithms that use small requirements of storage and operations for the computation of invariant tori in Hamiltonian systems (exact symplectic maps and Hamiltonian vector fields). The algorithms are based on the parameterization method and follow closely the proof of the KAM theorem given in [LGJV05] and [FLS07]. They essentially consist in solving a functional equation satisfied by the invariant tori by using a Newton method. Using some geometric identities, it is possible to perform a Newton step using little storage and few operations. In this paper we focus on the numerical issues of the algorithms (speed, storage and stability) and we refer to the mentioned papers for the rigorous results. We show how to compute efficiently both maximal invariant tori and whiskered tori, together with the associated invariant stable and unstable manifolds of whiskered tori. Moreover, we present fast algorithms for the iteration of the quasi-periodic cocycles and the computation of the invariant bundles, which is a preliminary step for the computation of invariant whiskered tori. Since quasi-periodic cocycles appear in other contexts, this section may be of independent interest. The numerical methods presented here allow to compute in a unified way primary and secondary invariant KAM tori. Secondary tori are invariant tori which can be contracted to a periodic orbit. We present some preliminary results that ensure that the methods are indeed implementable and fast. We postpone to a future paper optimized implementations and results on the breakdown of invariant tori.
Resumo:
Introduction: The general strategy to perform anti-doping analysis starts with a screening followed by a confirmatory step when a sample is suspected to be positive. The screening step should be fast, generic and able to highlight any sample that may contain a prohibited substance by avoiding false negative and reducing false positive results. The confirmatory step is a dedicated procedure comprising a selective sample preparation and detection mode. Aim: The purpose of the study is to develop rapid screening and selective confirmatory strategies to detect and identify 103 doping agents in urine. Methods: For the screening, urine samples were simply diluted by a factor 2 with ultra-pure water and directly injected ("dilute and shoot") in the ultrahigh- pressure liquid chromatography (UHPLC). The UHPLC separation was performed in two gradients (ESI positive and negative) from 5/95 to 95/5% of MeCN/Water containing 0.1% formic acid. The gradient analysis time is 9 min including 3 min reequilibration. Analytes detection was performed in full scan mode on a quadrupole time-of-flight (QTOF) mass spectrometer by acquiring the exact mass of the protonated (ESI positive) or deprotonated (ESI negative) molecular ion. For the confirmatory analysis, urine samples were extracted on SPE 96-well plate with mixed-mode cation (MCX) for basic and neutral compounds or anion exchange (MAX) sorbents for acidic molecules. The analytes were eluted in 3 min (including 1.5 min reequilibration) with a S1-25 Ann Toxicol Anal. 2009; 21(S1) Abstracts gradient from 5/95 to 95/5% of MeCN/Water containing 0.1% formic acid. Analytes confirmation was performed in MS and MS/MS mode on a QTOF mass spectrometer. Results: In the screening and confirmatory analysis, basic and neutral analytes were analysed in the positive ESI mode, whereas acidic compounds were analysed in the negative mode. The analyte identification was based on retention time (tR) and exact mass measurement. "Dilute and shoot" was used as a generic sample treatment in the screening procedure, but matrix effect (e.g., ion suppression) cannot be avoided. However, the sensitivity was sufficient for all analytes to reach the minimal required performance limit (MRPL) required by the World Anti Doping Agency (WADA). To avoid time-consuming confirmatory analysis of false positive samples, a pre-confirmatory step was added. It consists of the sample re-injection, the acquisition of MS/MS spectra and the comparison to reference material. For the confirmatory analysis, urine samples were extracted by SPE allowing a pre-concentration of the analyte. A fast chromatographic separation was developed as a single analyte has to be confirmed. A dedicated QTOF-MS and MS/MS acquisition was performed to acquire within the same run a parallel scanning of two functions. Low collision energy was applied in the first channel to obtain the protonated molecular ion (QTOF-MS), while dedicated collision energy was set in the second channel to obtain fragmented ions (QTOF-MS/MS). Enough identification points were obtained to compare the spectra with reference material and negative urine sample. Finally, the entire process was validated and matrix effects quantified. Conclusion: Thanks to the coupling of UHPLC with the QTOF mass spectrometer, high tR repeatability, sensitivity, mass accuracy and mass resolution over a broad mass range were obtained. The method was sensitive, robust and reliable enough to detect and identify doping agents in urine. Keywords: screening, confirmatory analysis, UHPLC, QTOF, doping agents
Resumo:
This article presents a feasibility study with the objective of investigating the potential of multi-detector computed tomography (MDCT) to estimate the bone age and sex of deceased persons. To obtain virtual skeletons, the bodies of 22 deceased persons with known age at death were scanned by MDCT using a special protocol that consisted of high-resolution imaging of the skull, shoulder girdle (including the upper half of the humeri), the symphysis pubis and the upper halves of the femora. Bone and soft-tissue reconstructions were performed in two and three dimensions. The resulting data were investigated by three anthropologists with different professional experience. Sex was determined by investigating three-dimensional models of the skull and pelvis. As a basic orientation for the age estimation, the complex method according to Nemeskéri and co-workers was applied. The final estimation was effected using additional parameters like the state of dentition, degeneration of the spine, etc., which where chosen individually by the three observers according to their experience. The results of the study show that the estimation of sex and age is possible by the use of MDCT. Virtual skeletons present an ideal collection for anthropological studies, because they are obtained in a non-invasive way and can be investigated ad infinitum.
Credit risk contributions under the Vasicek one-factor model: a fast wavelet expansion approximation
Resumo:
To measure the contribution of individual transactions inside the total risk of a credit portfolio is a major issue in financial institutions. VaR Contributions (VaRC) and Expected Shortfall Contributions (ESC) have become two popular ways of quantifying the risks. However, the usual Monte Carlo (MC) approach is known to be a very time consuming method for computing these risk contributions. In this paper we consider the Wavelet Approximation (WA) method for Value at Risk (VaR) computation presented in [Mas10] in order to calculate the Expected Shortfall (ES) and the risk contributions under the Vasicek one-factor model framework. We decompose the VaR and the ES as a sum of sensitivities representing the marginal impact on the total portfolio risk. Moreover, we present technical improvements in the Wavelet Approximation (WA) that considerably reduce the computational effort in the approximation while, at the same time, the accuracy increases.
Resumo:
The presence of acid fast bacilli in multiple specimens was investigated comparatively with Ziehl-Neelsen (ZN) and fluorescence microscopy (FM) staining in order to determine sensitivity in detecting tuberculosis (TB). A total of 465 specimens obtained from 295 patients were analysed at Harran University Medical School Hospital between March 1998 and March 2000. The culture was employed as the reference method. Sixty-eight patients (23.1%) were diagnosed as having TB by culture. The ZN and FM staining sensitivities were 67.6% (46/68) and 85.2% (58/68) respectively. Two hundred and one patients (68.1%) submitted one specimen to the laboratory. TB positivity was detected in 42 (20.9%) of these patients by culture. The sensitivities of ZN and FM stains were found to be 61% and 83% in these patients. However, in 18 patients (6.1%) who submitted two specimens to the laboratory, the TB was positive in six of them (33.3%) and ZN and FM sensitivities were 66% and 83% respectively. When three specimens or more were collected from the patients (76 patients, 25.8%), TB positivity was determined in 20 of them (26.3%) and the sensitivities were 80% and 92% in the ZN- and FM-stained smears, respectively. Our data indicate that in the diagnosis of TB, FM has greater sensitivity than ZN. In particular, in the case of a single specimen, the diagnostic value of FM is quite significant. It is, therefore, possible to conclude that both ZN and FM staining can be used for the diagnosis of TB when there are more than two specimens. However, if only one or two specimens are available, FM staining is preferable.
Resumo:
High-field (>or=3 T) cardiac MRI is challenged by inhomogeneities of both the static magnetic field (B(0)) and the transmit radiofrequency field (B(1)+). The inhomogeneous B fields not only demand improved shimming methods but also impede the correct determination of the zero-order terms, i.e., the local resonance frequency f(0) and the radiofrequency power to generate the intended local B(1)+ field. In this work, dual echo time B(0)-map and dual flip angle B(1)+-map acquisition methods are combined to acquire multislice B(0)- and B(1)+-maps simultaneously covering the entire heart in a single breath hold of 18 heartbeats. A previously proposed excitation pulse shape dependent slice profile correction is tested and applied to reduce systematic errors of the multislice B(1)+-map. Localized higher-order shim correction values including the zero-order terms for frequency f(0) and radiofrequency power can be determined based on the acquired B(0)- and B(1)+-maps. This method has been tested in 7 healthy adult human subjects at 3 T and improved the B(0) field homogeneity (standard deviation) from 60 Hz to 35 Hz and the average B(1)+ field from 77% to 100% of the desired B(1)+ field when compared to more commonly used preparation methods.
Resumo:
We present and validate BlastR, a method for efficiently and accurately searching non-coding RNAs. Our approach relies on the comparison of di-nucleotides using BlosumR, a new log-odd substitution matrix. In order to use BlosumR for comparison, we recoded RNA sequences into protein-like sequences. We then showed that BlosumR can be used along with the BlastP algorithm in order to search non-coding RNA sequences. Using Rfam as a gold standard, we benchmarked this approach and show BlastR to be more sensitive than BlastN. We also show that BlastR is both faster and more sensitive than BlastP used with a single nucleotide log-odd substitution matrix. BlastR, when used in combination with WU-BlastP, is about 5% more accurate than WU-BlastN and about 50 times slower. The approach shown here is equally effective when combined with the NCBI-Blast package. The software is an open source freeware available from www.tcoffee.org/blastr.html.
Resumo:
For doping control, analyses of samples are generally achieved in two steps: a rapid screening and, in the case of a positive result, a confirmatory analysis. A two-step methodology based on ultra-high-pressure liquid chromatography coupled to a quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was developed to screen and confirm 103 doping agents from various classes (e.g., beta-blockers, stimulants, diuretics, and narcotics). The screening method was presented in a previous article as part I (i.e., Fast analysis of doping agents in urine by ultra-high-pressure liquid chromatography-quadrupole time-of-flight mass spectrometry. Part I: screening analysis). For the confirmatory method, basic, neutral and acidic compounds were extracted by a dedicated solid-phase extraction (SPE) in a 96-well plate format and detected by MS in the tandem mode to obtain precursor and characteristic product ions. The mass accuracy and the elemental composition of precursor and product ions were used for compound identification. After validation including matrix effect determination, the method was considered reliable to confirm suspect results without ambiguity according to the positivity criteria established by the World Anti-Doping Agency (WADA). Moreover, an isocratic method was developed to separate ephedrine from its isomer pseudoephedrine and cathine from phenylpropanolamine in a single run, what allowed their direct quantification in urine.
Resumo:
The presence of Mycobacterium bovis in bovine carcasses with lesions suggestive of tuberculosis was evaluated. Seventy-two carcass samples were selected during slaughter inspection procedures in abattoirs in the state of Mato Grosso do Sul, Brazil. Seventeen (23.6%) of samples showed colonies suggestive of mycobacteria that were confirmed to be acid-fast bacilli by Ziehl-Neelsen staining. Polymerase chain reaction (PCR) using primers specific for M. bovis identified M. bovis in 13 (76.5%) isolates. The PCR-restriction enzyme pattern analysis using gene encoding for the 65-kDa protein and two restriction enzymes identified the remaining four isolates that were represented by two M. tuberculosis complex and two nontuberculous mycobacteria. The results are indicative of infection of slaughter cattle by M. bovis and other mycobacteria in the state of Mato Grosso do Sul.
Resumo:
In this paper we look at how a web-based social software can be used to make qualitative data analysis of online peer-to-peer learning experiences. Specifically, we propose to use Cohere, a web-based social sense-making tool, to observe, track, annotate and visualize discussion group activities in online courses. We define a specific methodology for data observation and structuring, and present results of the analysis of peer interactions conducted in discussion forum in a real case study of a P2PU course. Finally we discuss how network visualization and analysis can be used to gather a better understanding of the peer-to-peer learning experience. To do so, we provide preliminary insights on the social, dialogical and conceptual connections that have been generated within one online discussion group.
Resumo:
One of the most effective techniques offering QoS routing is minimum interference routing. However, it is complex in terms of computation time and is not oriented toward improving the network protection level. In order to include better levels of protection, new minimum interference routing algorithms are necessary. Minimizing the failure recovery time is also a complex process involving different failure recovery phases. Some of these phases depend completely on correct routing selection, such as minimizing the failure notification time. The level of protection also involves other aspects, such as the amount of resources used. In this case shared backup techniques should be considered. Therefore, minimum interference techniques should also be modified in order to include sharing resources for protection in their objectives. These aspects are reviewed and analyzed in this article, and a new proposal combining minimum interference with fast protection using shared segment backups is introduced. Results show that our proposed method improves both minimization of the request rejection ratio and the percentage of bandwidth allocated to backup paths in networks with low and medium protection requirements
Resumo:
The use of molecular tools for genotyping Mycobacterium tuberculosis isolates in epidemiological surveys in order to identify clustered and orphan strains requires faster response times than those offered by the reference method, IS6110 restriction fragment length polymorphism (RFLP) genotyping. A method based on PCR, the mycobacterial interspersed repetitive-unit-variable-number tandem-repeat (MIRU-VNTR) genotyping technique, is an option for fast fingerprinting of M. tuberculosis, although precise evaluations of correlation between MIRU-VNTR and RFLP findings in population-based studies in different contexts are required before the methods are switched. In this study, we evaluated MIRU-VNTR genotyping (with a set of 15 loci [MIRU-15]) in parallel to RFLP genotyping in a 39-month universal population-based study in a challenging setting with a high proportion of immigrants. For 81.9% (281/343) of the M. tuberculosis isolates, both RFLP and MIRU-VNTR types were obtained. The percentages of clustered cases were 39.9% (112/281) and 43.1% (121/281) for RFLP and MIRU-15 analyses, and the numbers of clusters identified were 42 and 45, respectively. For 85.4% of the cases, the RFLP and MIRU-15 results were concordant, identifying the same cases as clustered and orphan (kappa, 0.7). However, for the remaining 14.6% of the cases, discrepancies were observed: 16 of the cases clustered by RFLP analysis were identified as orphan by MIRU-15 analysis, and 25 cases identified as orphan by RFLP analysis were clustered by MIRU-15 analysis. When discrepant cases showing subtle genotypic differences were tolerated, the discrepancies fell from 14.6% to 8.6%. Epidemiological links were found for 83.8% of the cases clustered by both RFLP and MIRU-15 analyses, whereas for the cases clustered by RFLP or MIRU-VNTR analysis alone, links were identified for only 30.8% or 38.9% of the cases, respectively. The latter group of cases mainly comprised isolates that could also have been clustered, if subtle genotypic differences had been tolerated. MIRU-15 genotyping seems to be a good alternative to RFLP genotyping for real-time interventional schemes. The correlation between MIRU-15 and IS6110 RFLP findings was reasonable, although some uncertainties as to the assignation of clusters by MIRU-15 analysis were identified.
Resumo:
To elucidate the mechanisms of antischistosoma resistance, drug-resistant Schistosoma mansoni laboratory isolates are essential. We developed a new method for inducing resistance to praziquantel (PZQ) using successive drug treatments of Biomphalaria glabrata snails infected with S. mansoni. Infected B. glabrata were treated three times with 100 mg/kg PZQ for five consecutive days with a one-week interval between them. After the treatment, the cercariae (LE-PZQ) produced from these snails and the LE strains (susceptible) were used to infect mice. Forty-five days after infection, mice were treated with 200, 400 or 800 mg/kg PZQ. Thirty days post-treatment, we observed that the mean number of worms recovered by perfusion was significantly higher in the group of mice infected with the LE-PZQ isolate treated with 200 and 400 mg/kg in comparison to the LE strain with the same treatment. Moreover, there was a significant difference between the ED50 (effective dose required to kill 50% of the worms) of the LE-PZQ isolate (362 mg/kg) and the LE strain (68 mg/kg). In the in vitro assays, the worms of the LE-PZQ isolate were also less susceptible to PZQ. Thus, the use of infected snails as an experimental model for development of resistance to S. mansoni is effective, fast, simple and cheap.
Resumo:
Mycobacterium tuberculosis is the bacterium that causes tuberculosis (TB), a leading cause of death from infectious disease worldwide. Rapid diagnosis of resistant strains is important for the control of TB. Real-time polymerase chain reaction (RT-PCR) assays may detect all of the mutations that occur in the M. tuberculosis 81-bp core region of the rpoB gene, which is responsible for resistance to rifampin (RIF) and codon 315 of the katG gene and the inhA ribosomal binding site, which are responsible for isoniazid (INH). The goal of this study was to assess the performance of RT-PCR compared to traditional culture-based methods for determining the drug susceptibility of M. tuberculosis. BACTEC TM MGIT TM 960 was used as the gold standard method for phenotypic drug susceptibility testing. Susceptibilities to INH and RIF were also determined by genotyping of katG, inhA and rpoB genes. RT-PCR based on molecular beacons probes was used to detect specific point mutations associated with resistance. The sensitivities of RT-PCR in detecting INH resistance using katG and inhA targets individually were 55% and 25%, respectively and 73% when combined. The sensitivity of the RT-PCR assay in detecting RIF resistance was 99%. The median time to complete the RT-PCR assay was three-four hours. The specificities for tests were both 100%. Our results confirm that RT-PCR can detect INH and RIF resistance in less than four hours with high sensitivity.