853 resultados para Facial fracture
Resumo:
The X-ray structure of Image and MNDO optimized geometries of related 7-norbornenone derivatives show a clear tilt of the carbonyl bridge away from the C=C double bond. The preferred reduction from the more hindered face of the diester reveals the electron/electrostatic origin of π - facial selectivity in these systems. X-ray structure and MNDO calculations reveal the dominance of electronic effects in determining the π-facial selectivity in 4a.
Resumo:
In this work, static and drop-weight impact experiments, which have been conducted using three-point bend fracture specimens of a high-strength low-alloy steel, are analysed by performing finite-element simulations. The Gurson constitutive model that accounts for the ductile failure mechanisms of microvoid nucleation, growth and is employed within the framework of a finite deformation plasticity theory. Two populations of second-phase particles are considered, including large inclusions which initiate voids at an early stage and small particles which require large strains to nucleate voids. The most important objective of the work is to assess quantitatively the effects of material inertia, strain rate sensitivity and local adiabatic temperature rise (due to conversion of plastic work into heat) on dynamic ductile crack initiation. This is accomplished by comparing the evolution histories of void volume fraction near the notch tip in the static analysis with the dynamic analyses. The results indicate that increased strain hardening caused by strain rate sensitivity, which becomes important under dynamic loading, plays a benign role in considerably slowing down the void growth rate near the notch tip. This is partially opposed by thermal softening caused by adiabatic heating near the notch tip.
Resumo:
Low-cycle fatigue (LCF) responses of NIMONIC PE-16 for various prior microstructures and strain amplitudes have been evaluated and the fatigue behavior has been explained in terms of the operative deformation mechanisms. Total strain-controlled LCF tests were performed at 923 K on samples possessing three different prior microstructures: alloy A in solution-annealed condition (free of γ′ and carbides), alloy B with double aging treatment (spherical γ′ of 18-nm diameter and M23C6), and alloy C with another double aging treatment (γ′ of size 35 nm, MC and M23C6). All three microstructures exhibited an intial cyclic hardening followed by a period of gradual softening at 923 K. Coffin-Manson plots describing the plastic strain amplitudevs number of reversals to failure showed that alloy A had maximum fatigue life while C showed the least. Alloy B exhibited a two-slope behavior in the Coffin-Manson plot over the strain amplitudes investigated. This has been ascribed to the change in the degree of homogeneity of deformation at high and low strain amplitudes. Transmission electron microscopic studies were carried out to characterize the various deformation mechanisms and precipitation reactions occurring during fatigue testign. Fresh precipitation of fine γ′ was confirmed by the development of “mottled contrast” in alloy C. Evidence for the shearing of the ordered γ′ precipitates was revealed by the presence of superdislocations in alloy C. Repeated shearing during cyclic loading led to the reduction in the size of the γ′ and consequent softening. Coarser γ′ precipitates were associated with Orowan loops. The observed fatigue behavior has been rationalized based on the micromechanisms stated above and on the degree of homogenization of slip assessed by slipband spacing measurements on tested samples.
Resumo:
Tensile experiments at 673 K and grain sizes from similar to 8 to 17 mu m revealed large ductility at a low strain rate and a reduced ductility at a high strain rate, corresponding to a change from a high to a low value for the strain rate sensitivity. High strain rate deformation led to fracture by flow localization, whereas low strain rate deformation involved fracture by cavity nucleation and growth. Analysis revealed that grain boundary migration can assist significantly in reducing the stress concentrations caused by grain boundary sliding, thereby retarding cavity nucleation. Calculations demonstrate that the interlinkage of voids parallel and perpendicular to the tensile axis occurs significantly, so that it is not always possible to use the cavity shapes to distinguish between diffusion and plasticity controlled growth. Cavitation damage evolves slowly in materials with a coarser grain size because of reduced nucleation related to a reduction in the strain rate sensitivity and associated grain boundary sliding. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Notched three point bend specimens (TPB) were tested under crack mouth opening displacement (CMOD) control at a rate of 0.0004 mm/s and during the fracture process acoustic emissions (AE) were simultaneously monitored. It was observed that AE energy could be related to fracture energy. An experimental study was done to understand the behavior of AE energy with parameters of concrete like its strength and size. In this study, AE energy was used as a quantitative measure of size independent specific fracture energy of concrete beams and the concepts of boundary effect and local fracture energy were used to obtain size independent AE energy from which size independent fracture energy was obtained. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Uniaxial compression tests were conducted on Ti-6Al-4V specimens in the strain-rate range df 0.001 to 1 s(-1) and temperature range of 298 to 673 K. The stress-strain curves exhibited a peak flow stress followed by flow softening. Up to 523 K, the specimens cracked catastrophically after the flow softening started. Adiabatic shear banding was observed in this regime. The fracture surface exhibited both mode I and II fracture features. The state of stress existing in a compression test specimen when bulging occurs is responsible for this fracture. The instabilities observed in the present tests are classified as ''geometric'' in nature and are state-of-stress dependant, unlike the ''intrinsic'' instabilities, which are dependant on the dynamic constitutive behavior of the material.
Resumo:
This paper presents methodologies for fracture analysis of concrete structural components with and without considering tension softening effect. Stress intensity factor (SIF) is computed by using analytical approach and finite element analysis. In the analytical approach, SW accounting for tension softening effect has been obtained as the difference of SIP obtained using linear elastic fracture mechanics (LEFM) principles and SIP due to closing pressure. Superposition principle has been used by accounting for non-linearity in incremental form. SW due to crack closing force applied on the effective crack face inside the process zone has been computed using Green's function approach. In finite element analysis, the domain integral method has been used for computation of SIR The domain integral method is used to calculate the strain energy release rate and SIF when a crack grows. Numerical studies have been conducted on notched 3-point bending concrete specimen with and without considering the cohesive stresses. It is observed from the studies that SW obtained from the finite element analysis with and without considering the cohesive stresses is in good agreement with the corresponding analytical value. The effect of cohesive stress on SW decreases with increase of crack length. Further, studies have been conducted on geometrically similar structures and observed that (i) the effect of cohesive stress on SW is significant with increase of load for a particular crack length and (iii) SW values decreases with increase of tensile strength for a particular crack length and load.
Resumo:
The paper reports the failure features observed in low mass repeatedly (pendulum) impacted glass epoxy composites with and without the mid section having either 2-layers or 3-layers of flexible foam. Features such as through width and inclined cracks as well as adhering of foam observed in the experiments are explained. The significance of the foam material in modifying the impact response of the composite is stressed.
Resumo:
The 1:1 and 1:2 cooper(II) complexes with the tridentate compound bis(benzimidazol-2-ylmethyl)amine (L(1)) and its benzimidazole (L(2)) and amine (L(3)) N-methyl-substituted derivatives have been prepared and their spectroscopic properties studied. While the 1:1 complexes are of the type CuLX(2) nH(2)O (X = C/O-4(-), NO3-, Cl- or Br-), the 1:2 complexes are of the type CuL(2) (ClO4)(2) nH(2)O (L = L(1) or L(3), n = 0-4). In all these complexes L acts as a tridentate ligand with the amine nitrogen and both the benzimidazole nitrogens co-ordinating to Cu-II. The complex [CuL(2)(1)][ClO4](2) 2H(2)O crystallises in the monoclinic space group P2(1)/c with a = 9.828(2), b = 9.546(2) and c = 19.906(2) Angstrom and beta = 95.71(1)degrees, for Z = 2. The R value is 0.0635 for 2180 significant reflections. The copper(II) ion has an elongated octahedral geometry with four equatorial benzimidazole and two long-distance axial amine N donors. The Cu-N-bzim and Cu-N-amine distances are 2.011(4) and 2.597(6) Angstrom respectively. Factors favouring facial co-ordination to tridentate ligands are discussed. The 1:1 complexes involve meridonal co-ordination of the ligands, with square-based geometry as revealed by ligand-field and EPR spectral properties. The NMe substitution as in CuL(3)(ClO4)(2) confers low V ($) over tilde$$(max) and high E(1/2) for the cu(II)-Cu-I couple. Most of the 1:1 complexes are less reversible but exhibit E(1/2) values more positive than those of the corresponding 1:2 complexes.
Resumo:
To evaluate the parameters in the two-parameter fracture model, i.e. the critical stress intensity factor and critical crack tip opening displacement for the fracture of plain concrete in Mode 1 for the given test configuration and geometry, considerable computational effort is necessary. A simple graphical method has been proposed using normalized fracture parameters for the three-point bend (3PB) notched specimen and the double-edged notched (DEN) specimen. A similar graphical method is proposed to compute the maximum load carrying capacity of a specimen, using the critical fracture parameters both for 3PB and DEN configurations.
Resumo:
In this paper, an overview of some recent computational studies by the authors on ductile crack initiation under mode I, dynamic loading is presented. In these studies, a large deformation finite element procedure is employed along with the viscoplastic version of the Gurson constitutive model that accounts for the micro-mechanical processes of void nucleation, growth and coalescence. A three-point bend fracture specimen subjected to impact, and a single edge notched specimen loaded by a tensile stress pulse are analysed. Several loading rates are simulated by varying the impact speed or the rise time and magnitude of the stress pulse. A simple model involving a semi-circular notch with a pre-nucleated circular hole situated ahead of it is considered. The growth of the hole and its interaction with the notch tip, which leads to plastic strain and porosity localization in the ligament connecting them, is simulated. The role of strain-rate dependence on ductile crack initiation at high loading rates, and the specimen geometry effect on the variation of dynamic fracture toughness with loading rate are Investigated.
Resumo:
The complex singularity associated with a crack at the interface between two dissimilar, isotropic and homogeneous materials leads to mathematical artefacts, such as stress oscillations and crack face interpenetrations in the vicinity of the crack tip. To avoid these unrealistic features, Sinclair (Sinclair GB. On the stress singularity at an interface crack. International Journal of Fracture 1980;16(2):111-9) assumed a finite crack opening angle (COA) such that the singularity lambda became real equal to 1/2. This paper extends the COA model by considering real singularities not necessarily equal to 1/2. When COA is 0 degrees: the interface crack singularity is complex with a real part equal to 1/2. On increasing COA, the imaginary part of the singularity decreases and becomes zero at a threshold value of COA; at this point, the singularity is a real, repeated value. A further increase in COA results in a pair of real singularities. Different crack opening configurations and material combinations are studied, and results presented for threshold COAs and associated values of singularity. Stress analyses for these three regimes: (a) complex, (b) real pair and (c) real repeated singularities, are reported. It is seen that additional complexities are present in the last case. Typical results for stress fields are also included for comparing with standard fields. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
This paper is aimed at investigating the acoustic emission activities during indentation toughness tests on an alumina based wear resistant ceramic and 25 wt% silicon carbide whisker (SIC,) reinforced alumina composite. It has been shown that the emitted acoustic emission signals characterize the crack growth during loading. and unloading cycles in an indentation test. The acoustic emission results indicate that in the case of the composite the amount of crack growth during unloading is higher than that of loading, while the reverse is true in case of the wear resistant ceramics. Acoustic emission activity observed in wear resistant ceramic is less than that in the case of composite. An attempt has been made to correlate the acoustic emission signals with crack growth during indentation test.