973 resultados para FUSION CROSS-SECTIONS
Resumo:
The screening correction to the coherent pair-production cross section on the oxygen molecule has been calculated using self-consistent relativistic wave functions for the one-center and two-center Coulomb potentials. It is shown that the modification of the wave function due to molecular binding and the interference between contributions from the two atoms have both sizeable effects on the screening correction. The so-obtained coherent pair-production cross section which makes up the largest part of the total atomic cross section was used to evaluate the total nuclear absorption cross section from photon attenuation measurements on liquid oxygen. The result agrees with cross sections for other nuclei if A-scaling is assumed. The molecular effect on the pair cross section amounts to 15 % of the nuclear cross section in the {\delta-resonance} region.
Resumo:
In this work we propose a simple model for the total proton-air cross section, which is an improvement of the minijet model with the inclusion of a window in the p(T)-spectrum associated to the saturation physics. Our approach introduces a natural cutoff for the perturbative calculations which modifies the energy behavior of this component. The saturated component is calculated with a dipole model. The results are compared with experimental cross sections measured in cosmic ray experiments.
Resumo:
The tunneling of composite systems, where breakup may occur during the barrier penetration process, is considered in connection with the fusion of halo-like radioactive, neutron- and proton-rich nuclei, on heavy targets. The large amount of recent and new data clearly indicates that breakup hinders the fusion at energies near and below the Coulomb barrier. However, clear evidence for enhancement due to halo properties seems to over ride the breakup hindrance at lower energies, owing, to a large extent, to the extended matter density distribution. In particular we report here that at sub-barrier energies the fusion cross section of the Borromean two-neutron halo nucleus (6)He with the actinide nucleus (238)U is significantly enhanced as compared to the fusion of a similar projectile with no halo. This conclusion differs from that of the original work, where it was claimed that no such enhancement ensues. This sub-barrier fusion enhancement is also observed in the (6)He + (209)Bi system. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
An experimental overview of reactions induced by the stable, but weakly-bound nuclei (6)Li, (7)Li and (9)Be, and by the exotic, halo nuclei (6)He, (8)B, (11)Be and (17)F On medium-mass targets, such as (58)Ni, (59)Co or (64)Zn, is presented. Existing data on elastic scattering, total reaction cross sections, fusion, breakup and transfer channels are discussed in the framework of a CDCC approach taking into account the breakup degree of freedom.
Reaction mechanisms for weakly-bound, stable nuclei and unstable, halo nuclei on medium-mass targets
Resumo:
An experimental overview of reactions induced by the stable, but weakly-bound nuclei (6)Li, (7)Li and (9)Be, and by the exotic, halo nuclei (6)He, (8)B, (11)Be and (17)F on medium-mass targets, such as (58)Ni, (59)Co or (64)Zn, is presented. Existing data on elastic scattering, total reaction cross sections, fusion processes, breakup and transfer channels are discussed in the framework of a CDCC approach taking into account the breakup degree of freedom.
Resumo:
We propose a new technique to analyze total reaction cross sections. In this technique, which has been previously applied to fusion reactions, the experimental data are used to build a dimensionless reaction function, which does not depend oil the system size or details of the optical potential. In this way, total reaction cross sections for different systems can be directly compared. We employ this technique to perform a systematic study of reaction cross sections of weakly bound systems in different mass ranges, and compare their reaction functions with the ones of tightly bound systems with similar masses. We show that breakup reactions and neutron transfers in halo systems lead to large reaction functions, well above the ones of typical tightly or weakly bound stable systems. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
In this work, we investigate the limitation of the use of strength coefficients on double folding potentials to study the presence of the threshold anomaly in the elastic scattering of halo nuclei at near barrier energies. For this purpose, elastic angular distributions and reaction cross sections for the He-6 on Bi-209 are studied. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Elastic scattering of (8)B and (7)Be on a (58)Ni target has been measured at energies near the Coulomb barrier. The total reaction cross sections were deduced from Optical-model fits to the experimental angular distributions. Comparison with other systems shows evidence for proton-halo effects on (8)B, as well as for neutron-halo on (6)He reactions. While the enhancement in the cross section observed for (8)B is explained in terms of projectile breakup, in the case of (6)He reactions, the particle transfer proces explains the observed enhancement.
Resumo:
We investigated the 2PA absorption spectrum of a family of perylene tetracarboxylic derivatives ( PTCDs): bis( benzimidazo) perylene ( AzoPTCD), bis( benzimidazo) thioperylene ( Monothio BZP), n-pentylimidobenzimidazoperylene ( PazoPTCD), and bis( n-butylimido) perylene ( BuPTCD). These compounds present extremely high two-photon absorption, which makes them attractive for applications in photonics devices. The two-photon absorption cross-section spectra of perylene derivatives obtained via Z-scan technique were fitted by means of a sum-over-states ( SOS) model, which described with accuracy the different regions of the 2PA cross-section spectra. Frontier molecular orbital calculations show that all molecules present similar features, indicating that nonlinear optical properties in PTCDs are mainly determined by the central portion of the molecule, with minimal effect from the lateral side groups. In general, our results pointed out that the differences in the 2PA cross-sections among the compounds are mainly due to the nonlinearity resonance enhancement.
Resumo:
Incoherent eta photoproduction in nuclei is evaluated at forward angles within 4 to 9 GeV using a multiple scattering Monte Carlo cascade calculation with full eta-nucleus final-state interactions. The Primakoff, nuclear coherent and nuclear incoherent components of the cross sections fit remarkably well previous measurements for Be and Cu from Cornell, suggesting a destructive interference between the Coulomb and nuclear coherent amplitudes for Cu. The inelastic background of the data is consistently attributed to the nuclear incoherent part, which is clearly not isotropic as previously considered in Cornell's analysis. The respective Primakoff cross sections from Be and Cu give Gamma(eta ->gamma gamma)=0.476(62) keV, where the quoted error is only statistical. This result is consistent with the Particle Data Group average of 0.510(26) keV and in sharp contrast (similar to 50%) with the value of 0.324(46) keV obtained at Cornell.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The J/psipi --> (D) over barD*, D (D) over bar*, (D) over bar *D* and (D) over barD cross sections as a function of roots are evaluated in a QCD sum rule calculation. We study the Borel sum rule for the four point function involving pseudoscalar and vector meson currents, up to dimension four in the operator product expansion. We find that our results are smaller than the J/psipi --> charmed mesons cross sections obtained with models based on meson exchange, but are close to those obtained with quark exchange models. (C) 2002 Elsevier B.V. B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)