858 resultados para FRACTURE MECHANICS
Resumo:
A brief look at the history of fractography has shown a recent trend in the quantification of topographic parameters through the use of three-dimensional reconstruction techniques, which associate SEM stereoscopy and stereophotogrammetry software, allowing the calculation of the elevation measurement at numerous points of the topography due to the parallax that takes place during the tilting of the sample along the microscope eucentric plane. Several investigators have used reconstruction techniques to correlate some fractographic parameters, such as fractal dimension and fractured to projected area ratio, to the mechanical properties of materials, such as fracture toughness and tensile strength. So far, the search for a clear relationship between the fracture topography and mechanical properties has provided ambiguous results. The present work applied a surface metrology software to reconstruct three-dimensionally fracture surfaces (transgranular cleavage, intergranular and dimple fracture), corrosion pits and tribo-surfaces in order to explore the potential of this stereophotogrammetry technique. The existence of a variation in the calculated topographic parameters with the conditions of SEM image acquisition reinforces the importance of both good image acquisition and accurate calibration methods in order to validate this 3D reconstruction technique in metrological terms. Preliminary results did not indicate the existence of a clear relationship between either the true to project area ratio and CVN absorbed energy or the fractal dimension and CVN absorbed energy. It is likely that each fracture mechanism presents a proper relationship between the fractographic parameters and mechanical properties. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The effects of temperature on the fast fracture behavior of aluminum nitride with 5 wt% Y(2)O(3) ceramic were investigated. Four-point flexural strength and fracture toughness were measured in air at several temperatures (30-1,300 A degrees C). The flexural strength gradually decreased with the increase of temperature up to 1,000 A degrees C due to the change in the fracture mode from transgranular to intergranular, and then became almost constant up to 1,300 A degrees C. Two main flaw types as fracture origin were identified: small surface flaw and large pores. The volume fraction of the large pores was only 0.01%; however, they limited the strength on about 50% of the specimens. The fracture toughness decreased slightly up to 800 A degrees C controlled by the elastic modulus change, and then decreased significantly at 1,000 A degrees C due to the decrease in the grain-boundary toughness. Above 1,000 A degrees C, the fracture toughness increased significantly, and at 1,300 A degrees C, its value was close to that measured at room temperature.
Resumo:
This study examines the applicability of a micromechanics approach based upon the computational cell methodology incorporating the Gurson-Tvergaard (GT) model and the CTOA criterion to describe ductile crack extension of longitudinal crack-like defects in high pressure pipeline steels. A central focus is to gain additional insight into the effectiveness and limitations of both approaches to describe crack growth response and to predict the burst pressure for the tested cracked pipes. A verification study conducted on burst testing of large-diameter, precracked pipe specimens with varying crack depth to thickness ratio (a/t) shows the potential predictive capability of the cell approach even though both the CT model and the CTOA criterion appear to depend on defect geometry. Overall, the results presented here lend additional support for further developments in the cell methodology as a valid engineering tool for integrity assessments of pipelines with axial defects. (C) 2011 Elsevier Ltd. All rights reserved,
Resumo:
This work examines the effect of weld strength mismatch on fracture toughness measurements defined by J and CTOD fracture parameters using single edge notch bend (SE(B)) specimens. A central objective of the present study is to enlarge on previous developments of J and CTOD estimation procedures for welded bend specimens based upon plastic eta factors (eta) and plastic rotational factors (r (p) ). Very detailed non-linear finite element analyses for plane-strain models of standard SE(B) fracture specimens with a notch located at the center of square groove welds and in the heat affected zone provide the evolution of load with increased crack mouth opening displacement required for the estimation procedure. One key result emerging from the analyses is that levels of weld strength mismatch within the range +/- 20% mismatch do not affect significantly J and CTOD estimation expressions applicable to homogeneous materials, particularly for deeply cracked fracture specimens with relatively large weld grooves. The present study provides additional understanding on the effect of weld strength mismatch on J and CTOD toughness measurements while, at the same time, adding a fairly extensive body of results to determine parameters J and CTOD for different materials using bend specimens with varying geometries and mismatch levels.
Resumo:
In this work, a series of two-dimensional plane-strain finite element analyses was conducted to further understand the stress distribution during tensile tests on coated systems. Besides the film and the substrate, the finite element model also considered a number of cracks perpendicular to the film/substrate interface. Different from analyses commonly found in the literature, the mechanical behavior of both film and substrate was considered elastic-perfectly plastic in part of the analyses. Together with the film yield stress and the number of film cracks, other variables that were considered were crack tip geometry, the distance between two consecutive cracks and the presence of an interlayer. The analysis was based on the normal stresses parallel to the loading axis (sigma(xx)), which are responsible for cohesive failures that are observed in the film during this type of test. Results indicated that some configurations studied in this work have significantly reduced the value of sigma(xx) at the film/substrate interface and close to the pre-defined crack tips. Furthermore, in all the cases studied the values of sigma(xx) were systematically larger at the film/substrate interface than at the film surface. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We show that quantum mechanics predicts a contradiction with local hidden variable theories for photon number measurements which have limited resolving power, to the point of imposing an uncertainty in the photon number result which is macroscopic in absolute terms. We show how this can be interpreted as a failure of a new premise, macroscopic local realism.
Resumo:
Classical mechanics is formulated in complex Hilbert space with the introduction of a commutative product of operators, an antisymmetric bracket and a quasidensity operator that is not positive definite. These are analogues of the star product, the Moyal bracket, and the Wigner function in the phase space formulation of quantum mechanics. Quantum mechanics is then viewed as a limiting form of classical mechanics, as Planck's constant approaches zero, rather than the other way around. The forms of semiquantum approximations to classical mechanics, analogous to semiclassical approximations to quantum mechanics, are indicated.
Resumo:
We demonstrate a contradiction of quantum mechanics with local hidden variable theories for continuous quadrature phase amplitude (position and momentum) measurements. For any quantum state, this contradiction is lost for situations where the quadrature phase amplitude results are always macroscopically distinct. We show that for optical realizations of this experiment, where one uses homodyne detection techniques to perform the quadrature phase amplitude measurement, one has an amplification prior to detection, so that macroscopic fields are incident on photodiode detectors. The high efficiencies of such detectors may open a way for a loophole-free test of local hidden variable theories.
Resumo:
In his study of the 'time of arrival' problem in the nonrelativistic quantum mechanics of a single particle, Allcock [1] noted that the direction of the probability flux vector is not necessarily the same as that of the mean momentum of a wave packet, even when the packet is composed entirely of plane waves with a common direction of momentum. Packets can be constructed, for example for a particle moving under a constant force, in which probability flows for a finite time in the opposite direction to the momentum. A similar phenomenon occurs for the Dirac electron. The maximum amount of probabilitiy backflow which can occur over a given time interval can be calculated in each case.
Resumo:
Intracavity and external third order correlations in the damped nondegenerate parametric oscillator are calculated for quantum mechanics and stochastic electrodynamics (SED), a semiclassical theory. The two theories yield greatly different results, with the correlations of quantum mechanics being cubic in the system's nonlinear coupling constant and those of SED being linear in the same constant. In particular, differences between the two theories are present in at least a mesoscopic regime. They also exist when realistic damping is included. Such differences illustrate distinctions between quantum mechanics and a hidden variable theory for continuous variables.
Resumo:
We derive a general thermo-mechanical theory for particulate materials consisting of granules of arbitrary whose material points possess three translational and three independent rotational degrees of freedom. Additional field variables are the translational and rotational granular temperatures, the kinetic energies shape and size. The kinematics of granulate is described within the framework of a polar continuum theory of the velocity and spin fluctuations respectively and the usual thermodynamic temperature. We distinguish between averages over particle categories (averages in mass/velocity and moment of inertia/spin space, respectively) and particle phases where the average extends over distinct subsets of particle categories (multi phase flows). The relationship between the thermal energy in the granular system and phonon energy in a molecular system is briefly discussed in the main body of the paper and discussed in detail in the Appendix A. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
In 1966 the Brazilian physicist Klaus Tausk (b. 1927) circulated a preprint from the International Centre for Theoretical Physics in Trieste, Italy, criticizing Adriana Daneri, Angelo Loinger, and Giovanni Maria Prosperi`s theory of 1962 on the measurement problem in quantum mechanics. A heated controversy ensued between two opposing camps within the orthodox interpretation of quantum theory, represented by Leon Rosenfeld and Eugene P. Wigner. The controversy went well beyond the strictly scientific issues, however, reflecting philosophical and political commitments within the context of the Cold War, the relationship between science in developed and Third World countries, the importance of social skills, and personal idiosyncrasies.
Resumo:
Quantum mechanics has been formulated in phase space, with the Wigner function as the representative of the quantum density operator, and classical mechanics has been formulated in Hilbert space, with the Groenewold operator as the representative of the classical Liouville density function. Semiclassical approximations to the quantum evolution of the Wigner function have been defined, enabling the quantum evolution to be approached from a classical starting point. Now analogous semiquantum approximations to the classical evolution of the Groenewold operator are defined, enabling the classical evolution to be approached from a quantum starting point. Simple nonlinear systems with one degree of freedom are considered, whose Hamiltonians are polynomials in the Hamiltonian of the simple harmonic oscillator. The behavior of expectation values of simple observables and of eigenvalues of the Groenewold operator are calculated numerically and compared for the various semiclassical and semiquantum approximations.
Resumo:
A 14-year-old patient had a low-energy facial blunt trauma that evolved to right facial paralysis caused by parotid hematoma with parotid salivary gland lesion. Computed tomography and angiography demonstrated intraparotid collection without pseudoaneurysm and without radiologic signs of fracture in the face. The patient was treated with serial punctures for hematoma deflation, resolving with regression and complete remission of facial paralysis, with no late sequela. The authors discuss the relationship between facial nerve traumatic injuries associated or not with the presence of facial fractures, emphasizing the importance of early recognition and appropriate treatment of such cases.
Resumo:
We identify a test of quantum mechanics versus macroscopic local realism in the form of stochastic electrodynamics. The test uses the steady-state triple quadrature correlations of a parametric oscillator below threshold.