957 resultados para FORCE-FIELD


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents the development of a new parallel robot designed for helping with bone milling surgeries. The robot is a small modular wrist with 2 active degrees of freedom, and it is proposed to be used as an orientation device located at the end of a robotic arm designed for bone milling processes. A generic kinematic geometry is proposed for this device. This first article shows the developments on the workspace optimization and the analysis of the force field required to complete a reconstruction of the inferior jawbone. The singularities of the mechanism are analyzed, and the actuator selection is justified with the torque requirements and the study of the force space. The results obtained by the simulations allow building a first prototype using linear motors. Bone milling experiment video is shown as additional material.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El estudio de la influencia de perturbaciones de distinta naturaleza en configuraciones de puentes líquidos apoyados en dos discos coaxiales en rotación encuentra una importante motivación en el uso de dicha configuración en la fabricación de cristales semiconductores ultra-puros por la denominada técnica de zona flotante, en la que la rotación de los discos se utiliza para alcanzar temperaturas uniformes. El presente estudio muestra los resultados obtenidos mediante la aplicación de un método numérico en el análisis de la estabilidad de puentes líquidos en isorrotación sometidos al efecto de una fuerza axial uniforme (gravedad axial) y una excentricidad entre el eje de giro y el eje de los discos. Se analiza el efecto de la aplicación de estos factores tanto de forma conjunta como por separado. Aunque existen numerosos estudios previos sobre puentes líquidos sometidos a diversos efectos, el análisis del efecto combinado de la rotación con excentricidad y gravedad axial no ha sido realizado con anterioridad. Este estudio permite además entender los resultados del experimento a bordo de la misión TEXUS-23, en el que un puente líquido sujeto entre dos discos circulares y coaxiales es sometido al efecto de una rotación creciente en torno a un eje desplazado respecto al eje de los discos. Aunque en el experimento no se impone una fuerza axial controlada, la desestabilización y rotura del puente se produce de forma notablemente asimétrica, lo que no puede ser explicado con los estudios precedentes y sugiere una posible presencia de una aceleración axial residual. Se ha desarrollado por tanto un método de análisis de imágenes que permite comparar las formas obtenidas en el experimento con las calculadas numéricamente. En este estudio se muestran los detalles del procesado realizado en las imágenes de la misión TEXUS-23, y los resultados de su comparación con el análisis numérico, que permiten determinar el valor de la gravedad axial que mejor reproduce los resultados del experimento. Estos resultados ponen de manifiesto la importancia del conocimiento y la modelización de efectos cuya presencia (intencionada o no) afectan de forma visible a la estabilidad y la morfología de los puentes líquidos. ABSTRACT The study of the influence of various disturbances in configurations consisting of a liquid bridge supported by two co-axial disks in rotation has an important motivation in the use of this configuration in the fabrication of ultrapure semiconductor crystals via the so-called floating zone technique, in which the rotation of the disks is used to achieve a uniform temperature field. The present study shows the results obtained through the application of a numerical method in the analysis of the stability of liquid bridges in isorotation under the effect of a uniform axial force field (axial gravity) and an offset between the rotation axis and the axis of the supporting disks (eccentricity). The analysis studies the effect of both the combined and separate application of these factors. Although there are numerous studies on liquid bridges subject to various effects, the analysis of the combined effect of rotation with eccentricity and axial gravity has not been done before. Furthermore, this study allows us to understand the results from the experiment aboard the TEXUS-23 mission, in which a liquid bridge supported between two circular-shaped, co-axial disks is subject to the effect of an increasing rotation around an axis with an offset with respect to the axis of the disks. Although the experiment conditions do not include a controlled axial force field, the instability and breakage of the bridge occurs with a marked asymmetry, which cannot be explained by previous studies and suggests the possible presence of a residual axial gravity. Therefore, an image analysis method has been developed which allows to compare the shapes obtained in the experiment with those calculated with the numerical method. This study shows the details of the processing performed on the images from the TEXUS-23 mission and the results from their comparison with the numerical analysis, which allow to determine the axial gravity value which best recovers the experimental results. These results highlight the importance of the understanding and modelling of effects which, when present (intentionally or not), noticeably affect the stability and shape of the liquid bridges.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tumor induced angiogenesis processes including the effect of stochastic motion and branching of blood vessels can be described coupling a (nonlocal in time) integrodifferential kinetic equation of Fokker–Planck type with a diffusion equation for the tumor induced ingiogenic factor. The chemotactic force field depends on the flux of blood vessels through the angiogenic factor. We develop an existence and uniqueness theory for this system under natural assumptions on the initial data. The proof combines the construction of fundamental solutions for associated linearized problems with comparison principles, sharp estimates of the velocity integrals and compactness results for this type of kinetic and parabolic operators

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have measured experimental adsorption isotherms of water in zeolite LTA4A, and studied the regeneration process by performing subsequent adsorption cycles after degassing at different temperatures. We observed incomplete desorption at low temperatures, and cation rearrangement at successive adsorption cycles. We also developed a new molecular simulation force field able to reproduce experimental adsorption isotherms in the range of temperatures between 273 K and 374 K. Small deviations observed at high pressures are attributed to the change in the water dipole moment at high loadings. The force field correctly describes the preferential adsorption sites of water at different pressures. We tested the influence of the zeolite structure, framework flexibility, and cation mobility when considering adsorption and diffusion of water. Finally, we performed checks on force field transferability between different hydrophilic zeolite types, concluding that classical, non-polarizable water force fields are not transferable.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Isothermal-isobaric (NPT) molecular dynamics simulation has been performed to investigate the layering behavior and structure of nanoconfined quaternary alkylammoniums in organoclays. This work is focused on systems consisting of two clay layers and a number of alkylammoniums, and involves the use of modified Dreiding force field. The simulated basal spacings of organoclays agree satisfactorily with the experimental results in the literature. The atomic density profiles in the direction normal to the clay surface indicate that the alkyl chains within the interlayer space of montmorillonite exhibit an obvious layering behavior. The headgroups of long alkyl chains are distributed within two layers close to the clay surface, whereas the distributions of methyl and methylene groups are strongly dependent on the alkyl chain length and clay layer charge. Monolayer, bilayer, and pseudo-trilayer structures are found in organoclays modified with single long alkyl chains, which are identical to the structural models based on the measured basal spacings. A pseudo-quadrilayer structure, for the first time to our knowledge, is also identified in organoclays with double long alkyl chains. In the mixture structure of paraffin-type and multilayer, alkyl chains do not lie flat within a single layer but interlace, and also jump to the next layer in pseudo-trilayer as well as next nearest layer in pseudo-quadrilayer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To investigate the control mechanisms used in adapting to position-dependent forces, subjects performed 150 horizontal reaching movements over 25 cm in the presence of a position-dependent parabolic force field (PF). The PF acted only over the first 10 cm of the movement. On every fifth trial, a virtual mechanical guide (double wall) constrained subjects to move along a straight-line path between the start and target positions. Its purpose was to register lateral force to track formation of an internal model of the force field, and to look for evidence of possible alternative adaptive strategies. The force field produced a force to the right, which initially caused subjects to deviate in that direction. They reacted by producing deviations to the left, into the force field, as early as the second trial. Further adaptation resulted in rapid exponential reduction of kinematic error in the latter portion of the movement, where the greatest perturbation to the handpath was initially observed, whereas there was little modification of the handpath in the region where the PF was active. Significant force directed to counteract the PF was measured on the first guided trial, and was modified during the first half of the learning set. The total force impulse in the region of the PF increased throughout the learning trials, but it always remained less than that produced by the PF. The force profile did not resemble a mirror image of the PF in that it tended to be more trapezoidal than parabolic in shape. As in previous studies of force-field adaptation, we found that changes in muscle activation involved a general increase in the activity of all muscles, which increased arm stiffness, and selectively-greater increases in the activation of muscles which counteracted the PF. With training, activation was exponentially reduced, albeit more slowly than kinematic error. Progressive changes in kinematics and EMG occurred predominantly in the region of the workspace beyond the force field. We suggest that constraints on muscle mechanics limit the ability of the central nervous system to employ an inverse dynamics model to nullify impulse-like forces by generating mirror-image forces. Consequently, subjects adopted a strategy of slightly overcompensating for the first half of the force field, then allowing the force field to push them in the opposite direction. Muscle activity patterns in the region beyond the boundary of the force field were subsequently adjusted because of the relatively-slow response of the second-order mechanics of muscle impedance to the force impulse.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrophobins are small (similar to 100 aa) proteins that have an important role in the growth and development of mycelial fungi. They are surface active and, after secretion by the fungi, self-assemble into amphipathic membranes at hydrophobic/hydrophilic interfaces, reversing the hydrophobicity of the surface. In this study, molecular dynamics simulation techniques have been used to model the process by which a specific class I hydrophobin, SC3, binds to a range of hydrophobic/ hydrophilic interfaces. The structure of SC3 used in this investigation was modeled based on the crystal structure of the class II hydrophobin HFBII using the assumption that the disulfide pairings of the eight conserved cysteine residues are maintained. The proposed model for SC3 in aqueous solution is compact and globular containing primarily P-strand and coil structures. The behavior of this model of SC3 was investigated at an air/water, an oil/water, and a hydrophobic solid/water interface. It was found that SC3 preferentially binds to the interfaces via the loop region between the third and fourth cysteine residues and that binding is associated with an increase in a-helix formation in qualitative agreement with experiment. Based on a combination of the available experiment data and the current simulation studies, we propose a possible model for SC3 self-assembly on a hydrophobic solid/water interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Using molecular dynamics (MD) simulations, we explore the structural and dynamical properties of siRNA within the intercalated environment of a Mg:Al 2:1 Layered Double Hydroxide (LDH) nanoparticle. An ab initio force field (Condensed-phase Optimized Molecular Potentials for Atomistic Simulation Studies: COMPASS) is used for the MD simulations of the hybrid organic-inorganic systems. The structure, arrangement, mobility, close contacts and hydrogen bonds associated with the intercalated RNA are examined and contrasted with those of the isolated RNA. Computed powder X-ray diffraction patterns are also compared with related LDH-DNA experiments. As a method of probing whether the intercalated environment approximates the crystalline or rather the aqueous state, we explore the stability of the principle parameters (e.g., the major groove width) that differentiate both A- and A'- crystalline forms of siRNA and contrast this with recent findings for the same siRNA simulated in water. We find the crystalline forms remain structurally distinct when intercalated, whereas this is not the case in water. Implications for the stability of hybrid LDH-RNA systems are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, our goal was develop and describe a molecular model of the enzyme-inhibiting interaction which can be used for an optimized projection of a Microscope Force Atomic nanobiosensor to detect pesticides molecules, used in agriculture, to evaluate its accordance with limit levels stipulated in valid legislation for its use. The studied herbicide (imazaquin) is a typical member of imidazolinone family and is an inhibitor of the enzymatic activity of Acetohydroxiacid Synthase (AHAS) enzyme that is responsible for the first step of pathway for the synthesis of side-chains in amino acids. The analysis of this enzyme property in the presence of its cofactors was made to obtain structural information and charge distribution of the molecular surface to evaluate its capacity of became immobilized on the Microscopy Atomic Force tip. The computational simulation of the system, using Molecular Dynamics, was possible with the force-field parameters for the cofactor and the herbicides obtained by the online tool SwissParam and it was implemented in force-field CHARMM27, used by software GROMACS; then appropriated simulations were made to validate the new parameters. The molecular orientation of the AHAS was defined based on electrostatic map and the availability of the herbicide in the active site. Steered Molecular Dynamics (SMD) Simulations, followed by quantum mechanics calculations for more representative frames, according to the sequential QM/MM methodology, in a specific direction of extraction of the herbicide from the active site. Therefore, external harmonic forces were applied with similar force constants of AFM cantilever for to simulate herbicide detection experiments by the proposed nanobiosensor. Force value of 1391 pN and binding energy of -14048.52 kJ mol-1 were calculated.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The solvation of cyano- (CN-) based ionic liquids (ILs) and their capacity to establish hydrogen bonds (H-bonds) with water was studied by means of experimental and computational approaches. Experimentally, water activity data were measured for aqueous solutions of ILs based on 1-butyl-3-methylimidazolium ([BMIM](+)) cation combined with one of the following anions: thiocyanate ([SCN](-)), dicyanamide ([DCA](-)), or tricyanomethanide ([TCM](-)), and of 1-ethyl-3-methylimidazolium tetracyanoborate ([EMIM][TCB]). From the latter data, water activity coefficients were estimated showing that [BMIM][SCN] and [BMIM][DCA], unlike [BMIM][TCM] and [EMIM][TCB], are able to establish favorable interactions with water. Computationally, the conductor like screening model for real solvents (COSMO-RS) was used to estimate the water activity coefficients which compare well with the experimental ones. From the COSMO-RS results, it is suggested that the polarity of each ion composing the ILs has a strong effect on the solvation phenomena. Furthermore, classical molecular dynamics (MD) simulations were performed for obtaining an atomic level picture of the local molecular neighborhood of the different species. From the experimental and computational data it is showed that increasing the number of CN groups in the ILs' anions does not enhance their ability to establish H-bonds with water but decreases their polarities, being [BMIM][DCA] and [BMIM][SCN] the ones presenting higher propensity to interact.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many types of materials at nanoscale are currently being used in everyday life. The production and use of such products based on engineered nanomaterials have raised concerns of the possible risks and hazards associated with these nanomaterials. In order to evaluate and gain a better understanding of their effects on living organisms, we have performed first-principles quantum mechanical calculations and molecular dynamics simulations. Specifically, we will investigate the interaction of nanomaterials including semiconducting quantum dots and metallic nanoparticles with various biological molecules, such as dopamine, DNA nucleobases and lipid membranes. Firstly, interactions of semiconducting CdSe/CdS quantum dots (QDs) with the dopamine and the DNA nucleobase molecules are investigated using similar quantum mechanical approach to the one used for the metallic nanoparticles. A variety of interaction sites are explored. Our results show that small-sized Cd4Se4 and Cd4S4 QDs interact strongly with the DNA nucleobase if a DNA nucleobase has the amide or hydroxyl chemical group. These results indicate that these QDs are suitable for detecting subcellular structures, as also reported by experiments. The next two chapters describe a preparation required for the simulation of nanoparticles interacting with membranes leading to accurate structure models for the membranes. We develop a method for the molecular crystalline structure prediction of 1,2-Dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC), 1,2-Dimyristoyl-sn-glycero-3-phosphorylethanolamine (DMPE) and cyclic di-amino acid peptide using first-principles methods. Since an accurate determination of the structure of an organic crystal is usually an extremely difficult task due to availability of the large number of its conformers, we propose a new computational scheme by applying knowledge of symmetry, structural chemistry and chemical bonding to reduce the sampling size of the conformation space. The interaction of metal nanoparticles with cell membranes is finally carried out by molecular dynamics simulations, and the results are reported in the last chapter. A new force field is developed which accurately describes the interaction forces between the clusters representing small-sized metal nanoparticles and the lipid bilayer molecules. The permeation of nanoparticles into the cell membrane is analyzed together with the RMSD values of the membrane modeled by a lipid bilayer. The simulation results suggest that the AgNPs could cause the same amount of deformation as the AuNPs for the dysfunction of the membrane.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Abstract The development of innovative carbon-based materials can be greatly facilitated by molecular modeling techniques. Although the Reax Force Field (ReaxFF) can be used to simulate the chemical behavior of carbon-based systems, the simulation settings required for accurate predictions have not been fully explored. Using the ReaxFF, molecular dynamics (MD) simulations are used to simulate the chemical behavior of pure carbon and hydrocarbon reactive gases that are involved in the formation of carbon structures such as graphite, buckyballs, amorphous carbon, and carbon nanotubes. It is determined that the maximum simulation time step that can be used in MD simulations with the ReaxFF is dependent on the simulated temperature and selected parameter set, as are the predicted reaction rates. It is also determined that different carbon-based reactive gases react at different rates, and that the predicted equilibrium structures are generally the same for the different ReaxFF parameter sets, except in the case of the predicted formation of large graphitic structures with the Chenoweth parameter set under specific conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction : Une proportion importante des individus ayant recours à des services de réadaptation physique vit avec de la douleur et des incapacités locomotrices. Plusieurs interventions proposées par les professionnels de la réadaptation afin de cibler leurs difficultés locomotrices nécessitent des apprentissages moteurs. Toutefois, très peu d’études ont évalué l’influence de la douleur sur l’apprentissage moteur et aucune n’a ciblé l’apprentissage d’une nouvelle tâche locomotrice. L’objectif de la thèse était d’évaluer l’influence de stimulations nociceptives cutanée et musculaire sur l’acquisition et la rétention d’une adaptation locomotrice. Méthodologie : Des individus en santé ont participé à des séances de laboratoire lors de deux journées consécutives. Lors de chaque séance, les participants devaient apprendre à marcher le plus normalement possible en présence d’un champ de force perturbant les mouvements de leur cheville, produit par une orthèse robotisée. La première journée permettait d’évaluer le comportement des participants lors de la phase d’acquisition de l’apprentissage. La seconde journée permettait d’évaluer leur rétention. Selon le groupe expérimental, l’apprentissage se faisait en présence d’une stimulation nociceptive cutanée, musculaire ou d’aucune stimulation (groupe contrôle). Initialement, l’application du champ de force provoquait d’importantes déviations des mouvements de la cheville (i.e. erreurs de mouvement), que les participants apprenaient graduellement à réduire en compensant activement la perturbation. L’erreur de mouvement moyenne durant la phase d’oscillation (en valeur absolue) a été quantifiée comme indicateur de performance. Une analyse plus approfondie des erreurs de mouvement et de l’activité musculaire a permis d’évaluer les stratégies motrices employées par les participants. Résultats : Les stimulations nociceptives n’ont pas affecté la performance lors de la phase d’acquisition de l’apprentissage moteur. Cependant, en présence de douleur, les erreurs de mouvement résiduelles se trouvaient plus tard dans la phase d’oscillation, suggérant l’utilisation d’une stratégie motrice moins anticipatoire que pour le groupe contrôle. Pour le groupe douleur musculaire, cette stratégie était associée à une activation précoce du muscle tibial antérieur réduite. La présence de douleur cutanée au Jour 1 interférait avec la performance des participants au Jour 2, lorsque le test de rétention était effectué en absence de douleur. Cet effet n’était pas observé lorsque la stimulation nociceptive cutanée était appliquée les deux jours, ou lorsque la douleur au Jour 1 était d’origine musculaire. Conclusion : Les résultats de cette thèse démontrent que dans certaines circonstances la douleur peut influencer de façon importante la performance lors d’un test de rétention d’une adaptation locomotrice, malgré une performance normale lors de la phase d’acquisition. Cet effet, observé uniquement avec la douleur cutanée, semble cependant plus lié au changement de contexte entre l’acquisition des habiletés motrices et le test de rétention (avec vs. sans douleur) qu’à une interférence directe avec la consolidation des habiletés motrices. Par ailleurs, malgré l’absence d’influence de la douleur sur la performance des participants lors de la phase d’acquisition de l’apprentissage, les stratégies motrices utilisées par ceux-ci étaient différentes de celles employées par le groupe contrôle.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aetiology behind overuse injuries such as stress fractures is complex and multi-factorial. In sporting events where the loading is likely to be uneven (e.g. hurdling and jumps), research has suggested that the frequency of stress fractures seems to favour the athlete’s dominant limb. The tendency for an individual to have a preferred limb for voluntary motor acts makes limb selection a possible factor behind the development of unilateral overuse injuries, particularly when repeatedly used during high loading activities. The event of sprint hurdling is well suited for the study of loading asymmetry as the hurdling technique is repetitive and the limb movement asymmetrical. Of relevance to this study is the high incidence of Navicular Stress Fractures (NSF) in hurdlers, with suggestions there is a tendency for the fracture to develop in the trail leg foot, although this is not fully accepted. The Ground Reaction Force (GRF) with each foot contact is influenced by the hurdle action, with research finding step-to-step loading variations. However, it is unknown if this loading asymmetry extends to individual forefoot joints, thereby influencing stress fracture development. The first part of the study involved a series of investigations using a commercially available matrix style in-shoe sensor system (FscanTM, Tekscan Inc.). The suitability of insole sensor systems and custom made discrete sensors for use in hurdling-related training activities was assessed. The methodology used to analyse foot loading with each technology was investigated. The insole and discrete sensors systems tested proved to be unsuitable for use during full pace hurdling. Instead, a running barrier task designed to replicate the four repetitive foot contacts present during hurdling was assessed. This involved the clearance of a series of 6 barriers (low training hurdles), place in a straight line, using 4 strides between each. The second part of the study involved the analysis of "inter-limb" and "within foot loading asymmetries" using stance duration as well as vertical GRF under the Hallux (T1), the first metatarsal head (M1) and the central forefoot peak pressure site (M2), during walking, running, and running with barrier clearances. The contribution to loading asymmetry that each of the four repetitive foot contacts made during a series of barrier clearances was also assessed. Inter-limb asymmetry, in forefoot loading, occurred at discrete forefoot sites in a non-uniform manner across the three gait conditions. When the individual barrier foot contacts were compared, the stance duration was asymmetrical and the proportion of total forefoot load at M2 was asymmetrical. There were no significant differences between the proportion of forefoot load at M1, compared to M2; for any of the steps involved in the barrier clearance. A case study testing experimental (discrete) sensors during full pace sprinting and hurdling found that during both gait conditions, the trail limb experienced the greater vertical GRF at M1 and M2. During full pace hurdling, increased stance duration and vertical loading was a characteristic of the trail limb hurdle foot contacts. Commercially available in-shoe systems are not suitable for on field assessment of full pace hurdling. For the use of discrete sensor technology to become commonplace in the field, more robust sensors need to be developed.