940 resultados para FLASH


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Este trabalho propõe o estudo comparativo do uso de infográficos multimídia pelos sites Clarín.com, da Argentina e Folha.com, do Brasil. A pesquisa tem como objetivo verificar e analisar como esses dois importantes veículos de comunicação online da América Latina têm utilizado a tecnologia HTML5 para avançar nas possibilidades interativas do gênero jornalístico. Para tanto, a análise comparada trata da infografia multimídia, que tem passado por profundas mudanças tecnológicas, alterando o formato e o conteúdo da notícia. Além da conceituação teórica e revisão de literatura sobre infografia, newsgame, narrativa transmídia, jornalismo online, interatividade e as linguagens de programação voltadas para a produção de infografia multimídia, o trabalho realizou análise comparativa das seções Infográficos, veiculada pela Folha.com, e Especiales Multimedia, do Clarín.com. O estudo, quantitativo e qualitativo, verificou os recursos narrativos e informativos, ferramentas e tecnologias de linguagem de programação para Internet que são empregadas pelos dois meios de comunicação, com base no modelo de análise proposto por Alberto Cairo em Infografia 2.0 visualización interactiva de información en prensa. A pesquisa demonstrou que ainda que o Clarín.com tenha utilizado a tecnologia Flash na maioria dos infográficos multimídia analisados, os resultados da análise comparada mostram que os infográficos do jornal online argentino possibilitaram níveis mais elevados de interatividade do que os infográficos multimídia da Folha.com, desenvolvidos majoritariamente em HTML5.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Blurred edges appear sharper in motion than when they are stationary. We proposed a model of this motion sharpening that invokes a local, nonlinear contrast transducer function (Hammett et al, 1998 Vision Research 38 2099-2108). Response saturation in the transducer compresses or 'clips' the input spatial waveform, rendering the edges as sharper. To explain the increasing distortion of drifting edges at higher speeds, the degree of nonlinearity must increase with speed or temporal frequency. A dynamic contrast gain control before the transducer can account for both the speed dependence and approximate contrast invariance of motion sharpening (Hammett et al, 2003 Vision Research, in press). We show here that this model also predicts perceived sharpening of briefly flashed and flickering edges, and we show that the model can account fairly well for experimental data from all three modes of presentation (motion, flash, and flicker). At moderate durations and lower temporal frequencies the gain control attenuates the input signal, thus protecting it from later compression by the transducer. The gain control is somewhat sluggish, and so it suffers both a slow onset, and loss of power at high temporal frequencies. Consequently, brief presentations and high temporal frequencies of drift and flicker are less protected from distortion, and show greater perceptual sharpening.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The visual evoked magnetic response (VEMR) was measured over the occipital cortex to pattern and flash stimuli in 86 normal subjects aged 15-86 years. The latency of the major positive component (outgoing magnetic field) to the pattern reversal stimulus (P100M) increased with age, particularly after 55 years, while the amplitude of the P100M decreased more gradually over the lifespan. By contrast, the latency of the major positive component to the flash stimulus (P2M) increased more slowly with age after about 50 years, while its amplitude may have decreased in only a proportion of the elderly subjects. The changes in the P100M with age may reflect senile changes in the eye and optic nerve, e.g. senile miosis, degenerative changes in the retina or geniculostriate deficits. The P2M may be more susceptible to senile changes in the visual cortex. The data suggest that the contrast channels of visual information processing deteriorate more rapidly with age than the luminance channels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The practicality of recording visual evoked magnetic fields in 100 subjects 15-87 yr of age using a single channel d.c. SQUID second order gradiometer in an unshielded environment was investigated. The pattern reversal response showed a major positive component between 90 and 120 msec (P100M) while the response to flash produced a major positive component between 90 and 140 msec (P2M). Latency norms of the P100M were more variable than the corresponding P100 and P2 visual evoked potentials. The latency of the P100M may show a steep increase with age in most subjects after about 55 yr whereas only a small trend of latency with age was detected for the flash P2M.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have attempted to establish normative values of components of the magnetic evoked field to flash and pattern reversal stimuli prior to clinical use of the MEG. Full visual field, binocular evoked magnetic fields were recorded from 100 subjects 16 to 86 years of age with a single channel dc Squid (BTI) second-order gradiometer at a point 5-6cm above the inion. The majority of subjects showed a large positive component (out going magnetic field) of mean latency 115 ms (SD range 2.5 -11.8 in different decades of life) to the pattern reversal stimulus. In many subjects, this P100M was preceeded and succeeded by negative deflections (in going field). About 6% of subjects showed an inverted response i.e. a PNP wave. Waveforms to flash were more variable in shape with several positive components; the most consistent having a mean latency of 110ms (SD range 6.4-23.2). Responses to both stimuli were consistent when measured on the same subject on six different occasions (SD range 4.8 to 7.3). The data suggest that norms can be established for evoked magnetic field components, in particular for the pattern reversal P100M, which could be used in the diagnosis of neuro-opthalmological disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subjects with Alzheimer's disease (AD) exhibit normal visually evoked potentials (VEP) to pattern reversal stimuli but a delayed P2 flash response. The pattern response may originate in the primary visual cortex via the geniculo-calcarine pathway while the flash P2 may originate in the association areas via the cholinergic-tectal pathway. We now show: a) that the pathology of AD is more prominent in the visual association areas B18/19 than in B17 and b) that the magnetic signal to flash and pattern may originate from B18/19 and B17 respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effect of ageing on the visual system using the relatively new technique of magentoencephalography (MEG). This technique measures the magnetic signals produced by the visual system using a SQUID magnetometer. The magnetic visual evoked field (VEF) was measured over the occipital cortex to pattern and flash stimuli in 86 normal subjects aged 15 - 86 years. Factors that influenced subject defocussing or defixating the stimulus or selective attention were controlled as far as possible. The latency of the major positive component to the pattern reversal stimulus (P100M) increased with age particularly after the age of 55 years while the amplitude of the P100M decreased over the life span. The latency of the major flash component (P2M) increased much more slowly with age, while its amplitude decreased in only a proportion of elderly subjects. Changes in the P100M with age may reflect senile changes in the eye and optic nerve, e.g. senile miosis or degenerative changes in the retina. The P2M may be more susceptible to senile changes in the retina. The data suggest that the spatial frequency channels deteriorate more rapidly with age than the luminance channels and that MEG may be an effective method of studying ageing in the visual system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Different visual stimuli may activate separate channels in the visual system and produce magnetic responses from the human bran which originate from distinct regions of the visual cortex. To test this hypothesis, we have investigated the distribution of visual evoked magnetic responses to three distinct visual stimuli over the occipital region of the scalp with a DC-SQUID second-order gradiometer in an ubshielded environment. Patterned stimuli were presented full field and to the right half field, while a flash stimulus was presented full field only, in five normal subjects. Magnetic responses were recorded from 20 to 42 positions over the occipital scalp. Topographic maps were prepared of the major positive component within the first 150ms to the three stimuli, i.e., the P100m (pattern shift), C11m (pattern onset) and P2m (flash). For the pattern shift stimulus the data suggested the source of the P100m was close to the midline with the current directed towards the medial surface. The data for the pattern onset C11m suggested a source at a similar depth but with the current directed away from the midline towards the lateral surface. The flash P2m appeared to originate closer to the surface of the occipital pole than both the patterned stimuli. Hence the pattern shift (which may represent movement), and the pattern onset C11m (representing contrast and contour) appear to originate in similar areas of brain but to represent different asepcts of cortical processing. By contrast, the flash P2m (representing luminance change) appears to originate in a distinct area of visual cortex closer to the occipital pole.