817 resultados para FIELD METABOLIC-RATE


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Snakes are ectothermic animals and, therefore, their physiological functions are strongly affected by temperature. For instance, the resting metabolic rate (RMR) of this animals increase with the rise in body temperature. However, metabolic determinations in ectothermic organisms, including snakes, are generally made by submitting the animals to constant temperature regimes. This experimental procedure, although widely used, accepted and certainly suitable in several cases, submit the animals to a very different situation from that experienced by them in nature. In fact, ectothermics are known by presenting extensive variations in their body temperatures trough the day and/or seasons. If this disagreement between the thermal biology of the animals and the experimental conditions, for instance over the circadian cycle, affects the determinations of metabolic rates of ectotherm animals, remains quite uncertain. Thus, this study aimed to test the effects of different thermal regimes (fluctuating vs constant) in different temperature ranges over the TMR of rattlesnakes (Crotalus durissus). Therefore, the TMR of rattlesnakes was measured by the oxygen consumption rates ( V O2) in the constant temperatures of 15°C, 20°C, 25°C, 30°C and 35°C. For fluctuating regimes, snakes were measured in thermoperiods of 12/12 hours, as follows: 15°C and 25°C; 20°C and 30°C; 25°C and 35°C. Our results show that the RMR of C. durissus rises as the temperature increases, regardless of the thermal regime. The obtained RMR in the constant regimes of 20°C and 25°C was not different from that measured in the correspondent fluctuating regimes (i.e., 15 - 25°C e 20 - 30°C). However, at constant 30°C, the RMR was significantly higher than that obtained in the 30°C fluctuating regime (25 - 35ºC). This indicates that the potential effects in submitting of snakes to different thermal regimes of its thermal biology become more important with...

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dry mass (DM) and total ammonia-N (TAN) excretion were determined in embryos, larvae (ZI-ZIX, Z = zoea ), and postlarvae (PL) at 1, 7, and 14 d after metamorphosis (PL1, PL7, and PL14) of Macrobrachium amazonicum. Animals in postmolt-intermolt (A-C) stages were sorted according to their developmental stages, and placed into incubation chambers (similar to 30 mL) for 2 h to quantify TAN excretion. After this period, analyses were carried out using Koroleff`s method for TAN determination. Individual TAN excretion generally increased throughout ontogenetic development and varied from 0.0090 +/- 0.0039 mu g TAN/individual/h in embryo to 1.041 +/- 0.249 mu g TAN/individual/h in PL14. There was no significant difference between embryo-ZIV and ZV-ZIX (P > 0.05), whereas PL1, PL7, and PL14 differed (P < 0.05) from each other. Higher increments in individual ammonia-N excretion were observed between ZIV-ZV, PL1-PL7, and PL7-PL14. Mass-specific excretion rates presented two groups, embryo-ZII (P > 0.05) and ZIII-PL14 (P > 0.05). The lowest value was found in embryo (0.17 +/- 0.07 mu g TAN/mg DM/h) and the maximum values in ZV and PL1 (0.65 +/- 0.25 and 0.64 +/- 0.27 mu g TAN/mg DM/h, respectively). Results indicate that metabolic rate is proportional to the body mass in M. amazonicum, during early life stages. Variations in ammonia excretion during this phase may be associated mainly with body size. Data obtained in the present study may be useful in developing and optimizing rearing techniques of M. amazonicum, such as the proportions between biofilter and rearing tank size, and stocking density in culture tanks or in transport bags.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Over 6 million people die annually in the world because of cancer. Several groups are focused on studying cancer chemoprevention approaches. Resveratrol, a polyphenol, at high dosages, has been reported as antitumor and chemopreventive. However, it has a dose-dependent effect on cell death, even on some cancer cells. Objectives: Our aim was to investigate this dose-dependent effect on human bladder carcinoma ECV304 cells during oxidative stress condition. Methods: For this purpose. ECV304 cells incubated with different Resveratrol concentrations were analyzed as for their metabolic rate, membrane permeability, DNA fragmentation, anti/proapoptotic protein levels and phosphatidylserine exposure after oxidative stress. Results: Resveratrol induced cell death at high concentrations (>20 mu M), but not at low ones (0.1-20 mu M). Pretreatment with 2.5 mu M protected the cells from oxidative damage, whereas 50 mu M intensified the cell death and significantly increased Bad/Bcl-2 ratio (proapoptotic/antiapoptotic proteins). Resveratrol was able to modulate NO and PGE(2) secretion and performed an anti-adhesion activity of neutrophils on PMA-activated ECV304 cells. Conclusions: Resveratrol at high doses induces cell death of ECV304 cells whereas low doses induce protection. Modulation of Bcl-2 protein induced by Resveratrol could be mediating this effect. This information about the role of Resveratrol on cancer alerts us about its dose-dependent effects and could lead the design of future chemoprevention strategies. Published by Elsevier Ireland Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

O hipotireoidismo primário adquirido é uma endocrinopatia frequentemente diagnosticada na espécie canina. A terapia consiste na suplementação oral com levotiroxina sódica (L-tiroxina), no entanto vários protocolos terapêuticos têm sido propostos pela literatura, com doses variando 11 a 44µg/kg uma a duas vezes ao dia, visto à grande variabilidade de absorção e meia-vida plasmática do fármaco. Foram estudados 30 cães com hipotiroidismo primário adquirido (13 machos e 17 fêmeas, idade média de 7,9±1,9 anos e peso médio de 19,1±12,6 kg) atendidos no Hospital Veterinário da Universidade Guarulhos (UnG) e no Serviço de Endocrinologia de duas clínicas particulares da cidade de São Paulo (2009-2011), com o objetivo de avaliar a posologia e a frequência de administração da L-tiroxina, mais frequentemente utilizada, capaz de garantir um controle terapêutico satisfatório, avaliado através dos sinais clínicos e do teste pós-tiroxina, além de correlacionar a dose de tiroxina empregada com o peso dos animais. A dose média de tiroxina utilizada em nossa casuística foi de 16,9±3,1µg/kg, sendo a frequência de administração a cada 12 horas em 50% dos casos. Para se investigar uma possível correlação entre o peso e a dosagem de tiroxina utilizada, uma vez que cães de pequeno porte apresentam maior taxa metabólica que cães de grande porte, os animais foram agrupados em grupo A, cães com peso <10 Kg (n=12/30; 7,7±2,1 kg) e grupo B, cães com peso >10 kg (n=18/30, 26,8±10,7 kg). A dose média de tiroxina empregada nos grupos A e B não apresentaram diferença estatística e foram, respectivamente, 16±3µg/kg e 17±3µg/kg. A frequência de administração foi 50% a cada 24 horas e 50% a cada 12 horas para ambos os grupos. Dessa forma, a dose de tiroxina não parece se correlacionar com o peso do animal, sendo imprevisível quem deverá receber dose e frequência máxima da medicação. O protocolo deve ser individualizado e o paciente devidamente monitorado.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Serotonin reuptake inhibitors and cognitive-behavior therapy (CBT) are considered first-line treatments for obsessive-compulsive disorder (OCD). However, little is known about their modulatory effects on regional brain morphology in OCD patients. We sought to document structural brain abnormalities in treatment-naive OCD patients and to determine the effects of pharmacological and cognitive-behavioral treatments on regional brain volumes. Treatment-naive patients with OCD (n = 38) underwent structural magnetic resonance imaging scan before and after a 12-week randomized clinical trial with either fluoxetine or group CBT. Matched-healthy controls (n = 36) were also scanned at baseline. Voxel-based morphometry was used to compare regional gray matter (GM) volumes of regions of interest (ROIs) placed in the orbitofrontal, anterior cingulate and temporolimbic cortices, striatum, and thalamus. Treatment-naive OCD patients presented smaller GM volume in the left putamen, bilateral medial orbitofrontal, and left anterior cingulate cortices than did controls (p<0.05, corrected for multiple comparisons). After treatment with either fluoxetine or CBT (n = 26), GM volume abnormalities in the left putamen were no longer detectable relative to controls. ROI-based within-group comparisons revealed that GM volume in the left putamen significantly increased (p<0.012) in fluoxetine-treated patients (n = 13), whereas no significant GM volume changes were observed in CBT-treated patients (n = 13). This study supports the involvement of orbitofronto/cingulo-striatal loops in the pathophysiology of OCD and suggests that fluoxetine and CBT may have distinct neurobiological mechanisms of action. Neuropsychopharmacology (2012) 37, 734-745; doi: 10.1038/npp.2011.250; published online 26 October 2011

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Locomotor capacity is often considered an excellent measure of whole animal performance because it requires the integrated functioning of many morphological, physiological (and biochemical) traits. However, because studies tend to focus on either structural or functional suits of traits, we know little on whether and how morphological and physiological traits coevolve to produce adequate locomotor capacities. Hence, we investigate the evolutionary relationships between morphological and physiological parameters related to exercise physiology, using tropidurine lizards as a model. We employ a phylogenetic principal component analysis (PCA) to identify variable clusters (factors) related to morphology, energetic metabolism and muscle metabolism, and then analyze the relationships between these clusters and measures of locomotor performance, using two models (star and hierarchical phylogenies). Our data indicate that sprint performance is enhanced by simultaneous evolutionary tendencies affecting relative limb and tail size and physiological traits. Specifically, the high absolute sprint speeds exhibited by tropidurines from the sand dunes are explained by longer limbs, feet and tails and an increased proportion of glycolytic fibers in the leg muscle, contrasting with their lower capacity for overall oxidative metabolism [principal component (PC1)]. However, when sprint speeds are corrected for body size, performance correlates with a cluster (PC3) composed by moderate loads for activity metabolic rate and body size. The simultaneous measurement of morphological and physiological parameters is a powerful tool for exploring patterns of coadaptation and proposing morphophysiological associations that are not directly predictable from theory. This approach may trigger novel directions for investigating the evolution of form and function, particularly in the context of organismal performance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The relationship of body weight (BW) with white adipose tissue (WAT) mass and WAT gene expression pattern was investigated in mice submitted to physical training (PT). Adult male C57BL/6 mice were submitted to two 1.5-h daily swimming sessions (T, N = 18), 5 days/week for 4 weeks or maintained sedentary (S, N = 15). Citrate synthase activity increased significantly in the T group (P < 0.05). S mice had a substantial weight gain compared to T mice (4.06 ± 0.43 vs 0.38 ± 0.28 g, P < 0.01). WAT mass, adipocyte size, and the weights of gastrocnemius and soleus muscles, lung, kidney, and adrenal gland were not different. Liver and heart were larger and the spleen was smaller in T compared to S mice (P < 0.05). Food intake was higher in T than S mice (4.7 ± 0.2 vs 4.0 ± 0.3 g/animal, P < 0.05) but oxygen consumption at rest did not differ between groups. T animals showed higher serum leptin concentration compared to S animals (6.37 ± 0.5 vs 3.11 ± 0.12 ng/mL). WAT gene expression pattern obtained by transcription factor adipocyte determination and differentiation-dependent factor 1, fatty acid synthase, malic enzyme, hormone-sensitive lipase, adipocyte lipid binding protein, leptin, and adiponectin did not differ significantly between groups. Collectively, our results showed that PT prevents BW gain and maintains WAT mass due to an increase in food intake and unchanged resting metabolic rate. These responses are closely related to unchanged WAT gene expression patterns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN] To study the role of muscle mass and muscle activity on lactate and energy kinetics during exercise, whole body and limb lactate, glucose, and fatty acid fluxes were determined in six elite cross-country skiers during roller-skiing for 40 min with the diagonal stride (Continuous Arm + Leg) followed by 10 min of double poling and diagonal stride at 72-76% maximal O(2) uptake. A high lactate appearance rate (R(a), 184 +/- 17 micromol x kg(-1) x min(-1)) but a low arterial lactate concentration ( approximately 2.5 mmol/l) were observed during Continuous Arm + Leg despite a substantial net lactate release by the arm of approximately 2.1 mmol/min, which was balanced by a similar net lactate uptake by the leg. Whole body and limb lactate oxidation during Continuous Arm + Leg was approximately 45% at rest and approximately 95% of disappearance rate and limb lactate uptake, respectively. Limb lactate kinetics changed multiple times when exercise mode was changed. Whole body glucose and glycerol turnover was unchanged during the different skiing modes; however, limb net glucose uptake changed severalfold. In conclusion, the arterial lactate concentration can be maintained at a relatively low level despite high lactate R(a) during exercise with a large muscle mass because of the large capacity of active skeletal muscle to take up lactate, which is tightly correlated with lactate delivery. The limb lactate uptake during exercise is oxidized at rates far above resting oxygen consumption, implying that lactate uptake and subsequent oxidation are also dependent on an elevated metabolic rate. The relative contribution of whole body and limb lactate oxidation is between 20 and 30% of total carbohydrate oxidation at rest and during exercise under the various conditions. Skeletal muscle can change its limb net glucose uptake severalfold within minutes, causing a redistribution of the available glucose because whole body glucose turnover was unchanged.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Das Humane Cytomegalovirus (HCMV) ist ein Erreger von großer klinischer Relevanz. Die HCMV-Infektion, die insbesondere bei immunsupprimierten Patienten mit hoher Morbidität und Mortalität assoziiert ist, wird vorwiegend durch CD8+-zytotoxische T-Lymphozyten (CTL) kontrolliert. Das Tegumentprotein pp65 und das immediate early 1-Protein (IE1) waren als die dominanten CTL-Antigene bekannt. Ziel dieser Arbeit war es, die zur Immundominanz des pp65 führenden molekularen Mechanismen aufzuklären und die Grundlagen für die Analyse der IE1-spezifischen Immunantwort zu erarbeiten. Durch Peptidimmunisierung HLA-A2-transgener Mäuse wurden hochaffine pp65-spezifische CTL-Klone generiert. Für die Generierung ähnlicher CTL-Klone gegen IE1 konnte erstmals ein konserviertes HLA-A2-bindendes Peptid identifiziert werden. Mit Hilfe der pp65-spezifischen CTL-Klone konnte gezeigt werden, dass das durch Viruspartikel in die Zelle eingebrachte pp65 die Erkennung infizierter Zellen durch CD8+-CTL vermittelt. Durch den Nachweis der außergewöhnlichen Stabilität von pp65 in der Zelle gelang es, eine hohe metabolische Umsatzrate als eine Ursache von Immundominanz auszuschließen. Dagegen hob die Blockierung des CRM1-vermittelten nukleären Exportweges durch Zugabe von Hemmstoffen oder Zutransfektion kompetitiver Inhibitoren die Erkennung des pp65 nahezu auf. Hiermit wurde erstmalig eine Abhängigkeit der Präsentation eines immundominanten nukleären Proteins vom nukleozytoplasmatischen Transport nachgewiesen. Die Erkenntnisse dieser Arbeit stellen die Grundlage für die detaillierte Analyse der Zusammenhänge zwischen nukleärem Export und Antigenpräsentation dar.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hypocretin 1 and 2 (HCRT, also called Orexin A and B) are neuropeptides released by neurons in the lateral hypothalamus. HCRT neurons widely project to the entire neuroaxis. HCRT neurons have been reported to participate in various hypothalamic physiological processes including cardiovascular functions, wake-sleep cycle, and they may also influence metabolic rate and the regulation of body temperature. HCRT neurons are lost in narcolepsy, a rare neurological disorder, characterized by excessive daytime sleepiness, cataplexy, sleep fragmentation and occurrence of sleep-onset rapid-eye-movement episodes. We investigated whether HCRT neurons mediate the sleep-dependent cardiovascular adaptations to changes in ambient temperature (Ta). HCRT-ataxin3 transgenic mice with genetic ablation of HCRT neurons (n = 11) and wild-type controls (n = 12) were instrumented with electrodes for sleep scoring and a telemetric blood pressure (BP) transducer (DSI, Inc.). Simultaneous sleep and BP recordings were performed on mice undisturbed and freely-behaving at 20 °C, 25 °C, and 30 °C for 48 hours at each Ta. Analysis of variance of BP indicated a significance of the main effects of wake-sleep state and Ta, their interaction effect, and the wake-sleep state x mouse strain interaction effect. BP increased with decreasing Ta. This effect of Ta on BP was significantly lower in rapid-eye-movement sleep (REMS) than either in non-rapid-eye-movement sleep (NREMS) or wakefulness regardless of the mouse strain. BP was higher in wakefulness than either in NREMS or REMS. This effect of sleep on BP was significantly reduced in mice lacking HCRT neurons at each Ta, particularly during REMS. These data suggest that HCRT neurons play a critical role in mediating the effects of sleep but not those of Ta on BP in mice. HCRT neurons may thus be part of the central neural pathways which mediate the phenomenon of blood pressure dipping on passing from wakefulness to sleep.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Im Rahmen der vorliegenden Dissertation wurde die molekulare Evolution von Globinen in Amphibien und Teleostiern untersucht und Analysen zur Genexpression ausgewählter Globine durchgeführt. Die bisher besonders für die neueren Mitglieder der Superfamilie der Globine – Neuroglobin und Cytoglobin – schwerpunktmäßig in Mammaliern erbrachten Daten sollten durch die Analyse in Amphibien und Teleostiern auf ihre generelle Gültigkeit für Vertebraten überprüft werden. Die Analysen zur Genexpression wurden sowohl in silico, basierend auf genomischen wie EST-Daten, als auch experimentell durch qualitative und quantitative RT-PCR-Nachweise durchgeführt. Die mRNA-Lokalisation wurde durch in situ-Hybridisierungen an Gewebeschnitten beziehungsweise durch Whole mount in situ-Hybridisierung an ganzen Embryonen detektiert. In einem ersten Teil der Arbeit wurde das Globin-Repertoire von Xenopus tropicalis umfassend analysiert. Die Expressionsanalyse der gefundenen Globine umfasste nicht nur adulte Tiere, sonder erstmals auch detailliert die Entwicklungsstadien eines Vertebraten. Dabei wurde festgestellt, dass die vorwiegend neuronale Expression des streng konservierten Neuroglobins ein generelles Charakteristikum aller Tetrapoden ist und bereits in der frühembryonalen Entwicklung auftritt. Auch für das als Einzelkopie im Amphibiengenom vertretene Cytoglobin konnte eine strenge Sequenzkonservierung gezeigt werden. Das Expressionsmuster des Amphibien-Cytoglobins stimmte mit dem aus Mammaliern bekannten überein und zeigte konservierte Charakteristika dieses Globins bei Tetrapoden auf. Die Analyse des Xenopus-Genoms ergab zudem, dass Krallenfrösche nicht über Myoglobin verfügen. Genomische Vergleiche syntäner Genregionen ließen auf Rearrangements in diesem Genombereich im Verlauf der Evolution schließen, in deren Folge das Myoglobingen in den Krallenfröschen deletiert wurde. Die Hämoglobine wurden in Xenopus tropicalis erstmals in einem Amphibium umfassend analysiert. Die Gene zeigten demnach eine geclusterte Anordnung: der tropische Krallenfrosch verfügte über je ein funktionelles α- bzw. β-adultes und sieben bzw. vier α- bzw. β-larvale Hämoglobine, die während der Entwicklung bzw. in adulten Tieren charakteristisch exprimiert wurden. Die Analyse der Hämoglobine hinsichtlich ihrer Lage in einem Cluster, ihrer phylogenetischen Relation zueinander und nicht zuletzt ihres Expressionsmusters ließen Rückschlüsse auf ihre Evolution zu. Zusätzlich zu diesen bereits bekannten Globinen konnte im Rahmen dieser Dissertation das Globingen-Repertoirs von Xenopus um zwei weitere, bisher unbekannte Globine erweitert werden. Diese wurden entsprechend ihrer bisher unbekannten Funktion als GlobinX und GlobinY bezeichnet. Während GlobinY bisher ausschließlich in Amphibien nachgewiesen werden konnte, wurde GlobinX zudem in Teleostiern detektiert und repräsentiert damit ein auf Anamnia beschränktes Globin. Die rekombinante Proteinexpression von Neuroglobin, Cytoglobin, GlobinX und GlobinY des tropischen Krallenfrosches zeigte ein hexakoordiniertes Bindungsschema dieser Globine in ihrem Deoxy-Zustand. In einem zweiten Teil dieser Dissertation wurden Neuroglobin und Cytoglobin in Teleostiern untersucht und die Analyse für diese zwei Gene somit über die Tetrapoden hinaus auf den gesamten Stammbaum der Vertebraten ausgedehnt. Dabei wurde deutlich, dass die vorwiegend neuronale Expression des seit 420 Millionen Jahren streng konservierten Neuroglobins ein generelles Merkmal dieses Globins in allen Vertebraten ist. Der in Amphibien und Teleostiern erbrachte und mit Ergebnissen in Mammaliern übereinstimmende Nachweis von Neuroglobin in neuronalen Geweben mit einem hohen Stoffwechsel lässt derzeit eine Funktion dieses Globins im Sauerstoffmetabolimus als wahrscheinlich erscheinen. Ob Neuroglobin dabei als kurzzeitiger Sauerstoffspeicher, O2-Transoprter oder aber in der Detoxifikation reaktiver Sauerstoff- bzw. Stickstoffspezies agiert, bleibt zu untersuchen. Für Cytoglobin konnte eine offenbar alle Teleostier betreffende Genduplikation nachgewiesen werden. Phylogenetische Analysen zeigen die Monophylie der Vertebraten-Cytoglobine. Der Vergleich der paralogen Cytoglobine der Teleostier mit dem syntänen Genombereich des humanen Cytoglobins zeigte die wahrscheinliche Entstehung der Fisch-Cytoglobine durch eine Genomduplikation in einem Vorfahren aller Teleostier vor etwa 300-450 Millionen Jahren. Die paralogen Cytoglobine zeigten in Danio rerio und Tetraodon nigroviridis differierende, charakteristische Expressionsmuster, die mit der Theorie der Subfunktionalisierung von Genen in Folge eines Duplikationsereignisses kompatibel sind. Die Analyse zeigte, dass Cygb-1 prädominant in Gehirn und Herz exprimiert wurde, Cygb-2 hingegen bevorzugt in Gehirn und Auge. Dies bestätigte indirekt die Hypothese, nach der das Cytoglobin der Mammalier zwei unterschiedliche Funktionen in differenten Geweben wahrnimmt. Die rekombinante Expression von Cygb-1 des Zebrabärblings zeigte zudem, das auch dieses Globin in seiner Deoxy-Form über ein hexakoordiniertes Bindungsschema verfügt.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We hypothesized that network analysis is useful to expose coordination between whole body and myocellular levels of energy metabolism and can identify entities that underlie skeletal muscle's contribution to growth hormone-stimulated lipid handling and metabolic fitness. We assessed 112 metabolic parameters characterizing metabolic rate and substrate handling in tibialis anterior muscle and vascular compartment at rest, after a meal and exercise with growth hormone replacement therapy (GH-RT) of hypopituitary patients (n = 11). The topology of linear relationships (| r | ≥ 0.7, P ≤ 0.01) and mutual dependencies exposed the organization of metabolic relationships in three entities reflecting basal and exercise-induced metabolic rate, triglyceride handling, and substrate utilization in the pre- and postprandial state, respectively. GH-RT improved aerobic performance (+5%), lean-to-fat mass (+19%), and muscle area of tibialis anterior (+2%) but did not alter its mitochondrial and capillary content. Concomitantly, connectivity was established between myocellular parameters of mitochondrial lipid metabolism and meal-induced triglyceride handling in serum. This was mediated via the recruitment of transcripts of muscle lipid mobilization (LIPE, FABP3, and FABP4) and fatty acid-sensitive transcription factors (PPARA, PPARG) to the metabolic network. The interdependence of gene regulatory elements of muscle lipid metabolism reflected the norm in healthy subjects (n = 12) and distinguished the regulation of the mitochondrial respiration factor COX1 by GH and endurance exercise. Our observations validate the use of network analysis for systems medicine and highlight the notion that an improved stochiometry between muscle and whole body lipid metabolism, rather than alterations of single bottlenecks, contributes to GH-driven elevations in metabolic fitness.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

STUDY DESIGN: Ex vivo in vitro study evaluating a novel intervertebral disc/endplate culture system. OBJECTIVES: To establish a whole-organ intervertebral disc culture model for the study of disc degeneration in vitro, including the characterization of basic cell and organ function. SUMMARY OF BACKGROUND DATA: With current in vivo models for the study of disc and endplate degeneration, it remains difficult to investigate the complex disc metabolism and signaling cascades. In contrast, more controlled but simplified in vitro systems using isolated cells or disc fragments are difficult to culture due to the unconstrained conditions, with often-observed cell death or cell dedifferentiation. Therefore, there is a demand for a controlled culture model with preserved cell function that offers the possibility to investigate disc and endplate pathologies in a structurally intact organ. METHODS: Naturally constrained intervertebral disc/endplate units from rabbits were cultured in multi-well plates. Cell viability, metabolic activity, matrix composition, and matrix gene expression profile were monitored using the Live/Dead cell viability test (Invitrogen, Basel, Switzerland), tetrazolium salt reduction (WST-8), proteoglycan and deoxyribonucleic acid quantification assays, and quantitative polymerase chain reaction. RESULTS: Viability and organ integrity were preserved for at least 4 weeks, while proteoglycan and deoxyribonucleic acid content decreased slightly, and matrix genes exhibited a degenerative profile with up-regulation of type I collagen and suppression of collagen type II and aggrecan genes. Additionally, cell metabolic activity was reduced to one third of the initial value. CONCLUSIONS: Naturally constrained intervertebral rabbit discs could be cultured for several weeks without losing cell viability. Structural integrity and matrix composition were retained. However, the organ responded to the artificial environment with a degenerative gene expression pattern and decreased metabolic rate. Therefore, the described system serves as a promising in vitro model to study disc degeneration in a whole organ.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Body composition changes with increasing age in men, in that lean body mass decreases whereas fat mass increases. Whether this altered body composition is related to decreasing physical activity or to the known age-associated decrease in growth hormone secretion is uncertain. To address this question, three groups of healthy men (n = 14 in each group), matched for weight, height and body mass index, were investigated using dual-energy X-ray absorptiometry, indirect calorimetry and estimate of daily growth hormone secretion [i.e. plasma insulin-like growth factor I (IGF-I-) levels]. Group 1 comprised young untrained subjects aged 31.0 +/- 2.1 years (mean +/- SEM) taking no regular physical exercise; group 2 consisted of old untrained men aged 68.6 +/- 1.2 years; and group 3 consisted of healthy old men aged 67.4 +/- 1.2 years undergoing regular physical training for more than 10 years with a training distance of at least 30 km per week. Subjects in group 3 had for the past three years taken part in the 'Grand Prix of Berne', a 16.5-km race run at a speed of 4.7 +/- 0.6 min km-1 (most recent race). Fat mass was more than 4 kg higher in old untrained men (P < 0.01, ANOVA) than in the other groups (young untrained men, 12.0 +/- 0.9 kg; old untrained men, 16.1 +/- 1.0 kg; old trained men, 11.0 +/- 0.8 kg), whereas body fat distribution (i.e. the ratio of upper to lower body fat mass) was similar between the three groups. The lean mass of old untrained men was more than 3.5 kg lower (P < 0.02, ANOVA) than in the other two groups (young untrained men, 56.4 +/- 1.0 kg; old untrained men, 52.4 +/- 1.0 kg; old trained men, 56.0 +/- 1.0 kg), mostly because of a loss of skeletal muscle mass in the arms and legs (young untrained men, 24.0 +/- 0.5 kg; old untrained men 20.8 +/- 0.5 kg; old trained men, 23.6 +/- 0.7 kg; P < 0.01, ANOVA). Resting metabolic rate per kilogram lean mass decreased with increasing age independently of physical activity (r = -0.42, P < 0.005). Fuel metabolism was determined by indirect calorimetry at rest. Protein oxidation was similar in the three groups. Old untrained men had higher (P < 0.001) carbohydrate oxidation (young untrained men, 13.2 +/- 1.0 kcal kg-1 lean mass; old untrained men, 15.2 +/- 1.3 kcal Kg-1; old trained men, 7.8 +/- 0.8 kcal kg-1), but lower (P < 0.05, ANOVA) fat oxidation (young untrained men, 10.1 +/- 1.2 kcal kg-1 lean mass; old untrained men, 6.5 +/- 1.0 kcal kg-1; old trained men, 13.7 +/- 1.0 kcal kg-1) than the other two groups. Mean plasma IGF-I level in old trained men was higher than in old untrained men (P < 0.05), but was still lower than that observed in young untrained men (P < 0.005) (young untrained men, 236 +/- 24 ng mL-1; old untrained men, 119 +/- 13 ng mL-1; old trained men, 166 +/- 14 ng mL-1). In summary, regular physical training in older men seems to prevent the changes in body composition and fuel metabolism normally associated with ageing. Whether regular physical training in formerly untrained old subjects would result in similar changes awaits further study.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For low-energy organisms such as bivalves, the costs of thermal compensation of biological rates (synonymous with acclimation or acclimatization) may be higher than the benefits. We therefore conducted two experiments to examine the effect of seasonal temperature changes on behaviour and oxygen consumption. In the first experiment, we examined the effects of seasonal temperature changes on the freshwater bivalve Anodonta anatina, taking measurements each month for a year at the corresponding temperature for that time of year. There was no evidence for compensation of burrowing valve closure duration or frequency, or locomotory speed. In the second experiment, we compared A. anatina at summer and winter temperatures (24 and 4°C, respectively) and found no evidence for compensation of the burrowing rate, valve closure duration or frequency, or oxygen consumption rates during burrowing, immediately after valve closure or at rest. Within the experimental limits of this study, the evidence suggests that thermal compensation of biological rates is not a strategy employed by A. anatina. We argue that this is due to either a lack of evolutionary pressure to acclimatize, or evolutionary pressure to not acclimatize. Firstly, there is little incentive to increase metabolic rate to enhance predatory ability given that these are filter feeders. Secondly, maintained low energetic demand, enhanced at winter temperatures, is essential for predator avoidance, i.e. valve closure. Thus, we suggest that the costs of acclimatization outweigh the benefits in A. anatina.