984 resultados para Extreme bounds analysis
Resumo:
We provide a method whereby, given mode and (upper approximation) type information, we can detect procedures and goals that can be guaranteed to not fail (i.e., to produce at least one solution or not termínate). The technique is based on an intuitively very simple notion, that of a (set of) tests "covering" the type of a set of variables. We show that the problem of determining a covering is undecidable in general, and give decidability and complexity results for the Herbrand and linear arithmetic constraint systems. We give sound algorithms for determining covering that are precise and efiicient in practice. Based on this information, we show how to identify goals and procedures that can be guaranteed to not fail at runtime. Applications of such non-failure information include programming error detection, program transiormations and parallel execution optimization, avoiding speculative parallelism and estimating lower bounds on the computational costs of goals, which can be used for granularity control. Finally, we report on an implementation of our method and show that better results are obtained than with previously proposed approaches.
Resumo:
We present a tutorial overview of Ciaopp, the Ciao system preprocessor. Ciao is a public-domain, next-generation logic programming system, which subsumes ISO-Prolog and is specifically designed to a) be highly extensible via librarles and b) support modular program analysis, debugging, and optimization. The latter tasks are performed in an integrated fashion by Ciaopp. Ciaopp uses modular, incremental abstract interpretation to infer properties of program predicates and literals, including types, variable instantiation properties (including modes), non-failure, determinacy, bounds on computational cost, bounds on sizes of terms in the program, etc. Using such analysis information, Ciaopp can find errors at compile-time in programs and/or perform partial verification. Ciaopp checks how programs cali system librarles and also any assertions present in the program or in other modules used by the program. These assertions are also used to genérate documentation automatically. Ciaopp also uses analysis information to perform program transformations and optimizations such as múltiple abstract specialization, parallelization (including granularity control), and optimization of run-time tests for properties which cannot be checked completely at compile-time. We illustrate "hands-on" the use of Ciaopp in all these tasks. By design, Ciaopp is a generic tool, which can be easily tailored to perform these and other tasks for different LP and CLP dialects.
Resumo:
We present a method for the static resource usage analysis of MiniZinc models. The analysis can infer upper bounds on the usage that a MiniZinc model will make of some resources such as the number of constraints of a given type (equality, disequality, global constraints, etc.), the number of variables (search variables or temporary variables), or the size of the expressions before calling the solver. These bounds are obtained from the models independently of the concrete input data (the instance data) and are in general functions of sizes of such data. In our approach, MiniZinc models are translated into Ciao programs which are then analysed by the CiaoPP system. CiaoPP includes a parametric analysis framework for resource usage in which the user can define resources and express the resource usage of library procedures (and certain program construets) by means of a language of assertions. We present the approach and report on a preliminary implementation, which shows the feasibility of the approach, and provides encouraging results.
Resumo:
Effective static analyses have been proposed which infer bounds on the number of resolutions or reductions. These have the advantage of being independent from the platform on which the programs are executed and have been shown to be useful in a number of applications, such as granularity control in parallel execution. On the other hand, in distributed computation scenarios where platforms with different capabilities come into play, it is necessary to express costs in metrics that include the characteristics of the platform. In particular, it is specially interesting to be able to infer upper and lower bounds on actual execution times. With this objective in mind, we propose an approach which combines compile-time analysis for cost bounds with a one-time profiling of the platform in order to determine the valúes of certain parameters for a given platform. These parameters calíbrate a cost model which, from then on, is able to compute statically time bound functions for procedures and to predict with a significant degree of accuracy the execution times of such procedures in the given platform. The approach has been implemented and integrated in the CiaoPP system.
Resumo:
Compile-time program analysis techniques can be applied to Web service orchestrations to prove or check various properties. In particular, service orchestrations can be subjected to resource analysis, in which safe approximations of upper and lower resource usage bounds are deduced. A uniform analysis can be simultaneously performed for different generalized resources that can be directiy correlated with cost- and performance-related quality attributes, such as invocations of partners, network traffic, number of activities, iterations, and data accesses. The resulting safe upper and lower bounds do not depend on probabilistic assumptions, and are expressed as functions of size or length of data components from an initiating message, using a finegrained structured data model that corresponds to the XML-style of information structuring. The analysis is performed by transforming a BPEL-like representation of an orchestration into an equivalent program in another programming language for which the appropriate analysis tools already exist.
Resumo:
Automatic cost analysis of programs has been traditionally studied in terms of a number of concrete, predefined resources such as execution steps, time, or memory. However, the increasing relevance of analysis applications such as static debugging and/or certification of user-level properties (including for mobile code) makes it interesting to develop analyses for resource notions that are actually applicationdependent. This may include, for example, bytes sent or received by an application, number of files left open, number of SMSs sent or received, number of accesses to a database, money spent, energy consumption, etc. We present a fully automated analysis for inferring upper bounds on the usage that a Java bytecode program makes of a set of application programmer-definable resources. In our context, a resource is defined by programmer-provided annotations which state the basic consumption that certain program elements make of that resource. From these definitions our analysis derives functions which return an upper bound on the usage that the whole program (and individual blocks) make of that resource for any given set of input data sizes. The analysis proposed is independent of the particular resource. We also present some experimental results from a prototype implementation of the approach covering an ample set of interesting resources.
Resumo:
El Análisis de Consumo de Recursos o Análisis de Coste trata de aproximar el coste de ejecutar un programa como una función dependiente de sus datos de entrada. A pesar de que existen trabajos previos a esta tesis doctoral que desarrollan potentes marcos para el análisis de coste de programas orientados a objetos, algunos aspectos avanzados, como la eficiencia, la precisión y la fiabilidad de los resultados, todavía deben ser estudiados en profundidad. Esta tesis aborda estos aspectos desde cuatro perspectivas diferentes: (1) Las estructuras de datos compartidas en la memoria del programa son una pesadilla para el análisis estático de programas. Trabajos recientes proponen una serie de condiciones de localidad para poder mantener de forma consistente información sobre los atributos de los objetos almacenados en memoria compartida, reemplazando éstos por variables locales no almacenadas en la memoria compartida. En esta tesis presentamos dos extensiones a estos trabajos: la primera es considerar, no sólo los accesos a los atributos, sino también los accesos a los elementos almacenados en arrays; la segunda se centra en los casos en los que las condiciones de localidad no se cumplen de forma incondicional, para lo cual, proponemos una técnica para encontrar las precondiciones necesarias para garantizar la consistencia de la información acerca de los datos almacenados en memoria. (2) El objetivo del análisis incremental es, dado un programa, los resultados de su análisis y una serie de cambios sobre el programa, obtener los nuevos resultados del análisis de la forma más eficiente posible, evitando reanalizar aquellos fragmentos de código que no se hayan visto afectados por los cambios. Los analizadores actuales todavía leen y analizan el programa completo de forma no incremental. Esta tesis presenta un análisis de coste incremental, que, dado un cambio en el programa, reconstruye la información sobre el coste del programa de todos los métodos afectados por el cambio de forma incremental. Para esto, proponemos (i) un algoritmo multi-dominio y de punto fijo que puede ser utilizado en todos los análisis globales necesarios para inferir el coste, y (ii) una novedosa forma de almacenar las expresiones de coste que nos permite reconstruir de forma incremental únicamente las funciones de coste de aquellos componentes afectados por el cambio. (3) Las garantías de coste obtenidas de forma automática por herramientas de análisis estático no son consideradas totalmente fiables salvo que la implementación de la herramienta o los resultados obtenidos sean verificados formalmente. Llevar a cabo el análisis de estas herramientas es una tarea titánica, ya que se trata de herramientas de gran tamaño y complejidad. En esta tesis nos centramos en el desarrollo de un marco formal para la verificación de las garantías de coste obtenidas por los analizadores en lugar de analizar las herramientas. Hemos implementado esta idea mediante la herramienta COSTA, un analizador de coste para programas Java y KeY, una herramienta de verificación de programas Java. De esta forma, COSTA genera las garantías de coste, mientras que KeY prueba la validez formal de los resultados obtenidos, generando de esta forma garantías de coste verificadas. (4) Hoy en día la concurrencia y los programas distribuidos son clave en el desarrollo de software. Los objetos concurrentes son un modelo de concurrencia asentado para el desarrollo de sistemas concurrentes. En este modelo, los objetos son las unidades de concurrencia y se comunican entre ellos mediante llamadas asíncronas a sus métodos. La distribución de las tareas sugiere que el análisis de coste debe inferir el coste de los diferentes componentes distribuidos por separado. En esta tesis proponemos un análisis de coste sensible a objetos que, utilizando los resultados obtenidos mediante un análisis de apunta-a, mantiene el coste de los diferentes componentes de forma independiente. Abstract Resource Analysis (a.k.a. Cost Analysis) tries to approximate the cost of executing programs as functions on their input data sizes and without actually having to execute the programs. While a powerful resource analysis framework on object-oriented programs existed before this thesis, advanced aspects to improve the efficiency, the accuracy and the reliability of the results of the analysis still need to be further investigated. This thesis tackles this need from the following four different perspectives. (1) Shared mutable data structures are the bane of formal reasoning and static analysis. Analyses which keep track of heap-allocated data are referred to as heap-sensitive. Recent work proposes locality conditions for soundly tracking field accesses by means of ghost non-heap allocated variables. In this thesis we present two extensions to this approach: the first extension is to consider arrays accesses (in addition to object fields), while the second extension focuses on handling cases for which the locality conditions cannot be proven unconditionally by finding aliasing preconditions under which tracking such heap locations is feasible. (2) The aim of incremental analysis is, given a program, its analysis results and a series of changes to the program, to obtain the new analysis results as efficiently as possible and, ideally, without having to (re-)analyze fragments of code that are not affected by the changes. During software development, programs are permanently modified but most analyzers still read and analyze the entire program at once in a non-incremental way. This thesis presents an incremental resource usage analysis which, after a change in the program is made, is able to reconstruct the upper-bounds of all affected methods in an incremental way. To this purpose, we propose (i) a multi-domain incremental fixed-point algorithm which can be used by all global analyses required to infer the cost, and (ii) a novel form of cost summaries that allows us to incrementally reconstruct only those components of cost functions affected by the change. (3) Resource guarantees that are automatically inferred by static analysis tools are generally not considered completely trustworthy, unless the tool implementation or the results are formally verified. Performing full-blown verification of such tools is a daunting task, since they are large and complex. In this thesis we focus on the development of a formal framework for the verification of the resource guarantees obtained by the analyzers, instead of verifying the tools. We have implemented this idea using COSTA, a state-of-the-art cost analyzer for Java programs and KeY, a state-of-the-art verification tool for Java source code. COSTA is able to derive upper-bounds of Java programs while KeY proves the validity of these bounds and provides a certificate. The main contribution of our work is to show that the proposed tools cooperation can be used for automatically producing verified resource guarantees. (4) Distribution and concurrency are today mainstream. Concurrent objects form a well established model for distributed concurrent systems. In this model, objects are the concurrency units that communicate via asynchronous method calls. Distribution suggests that analysis must infer the cost of the diverse distributed components separately. In this thesis we propose a novel object-sensitive cost analysis which, by using the results gathered by a points-to analysis, can keep the cost of the diverse distributed components separate.
Resumo:
The research in this thesis is related to static cost and termination analysis. Cost analysis aims at estimating the amount of resources that a given program consumes during the execution, and termination analysis aims at proving that the execution of a given program will eventually terminate. These analyses are strongly related, indeed cost analysis techniques heavily rely on techniques developed for termination analysis. Precision, scalability, and applicability are essential in static analysis in general. Precision is related to the quality of the inferred results, scalability to the size of programs that can be analyzed, and applicability to the class of programs that can be handled by the analysis (independently from precision and scalability issues). This thesis addresses these aspects in the context of cost and termination analysis, from both practical and theoretical perspectives. For cost analysis, we concentrate on the problem of solving cost relations (a form of recurrence relations) into closed-form upper and lower bounds, which is the heart of most modern cost analyzers, and also where most of the precision and applicability limitations can be found. We develop tools, and their underlying theoretical foundations, for solving cost relations that overcome the limitations of existing approaches, and demonstrate superiority in both precision and applicability. A unique feature of our techniques is the ability to smoothly handle both lower and upper bounds, by reversing the corresponding notions in the underlying theory. For termination analysis, we study the hardness of the problem of deciding termination for a speci�c form of simple loops that arise in the context of cost analysis. This study gives a better understanding of the (theoretical) limits of scalability and applicability for both termination and cost analysis.
Resumo:
Fractal and multifractal are concepts that have grown increasingly popular in recent years in the soil analysis, along with the development of fractal models. One of the common steps is to calculate the slope of a linear fit commonly using least squares method. This shouldn?t be a special problem, however, in many situations using experimental data the researcher has to select the range of scales at which is going to work neglecting the rest of points to achieve the best linearity that in this type of analysis is necessary. Robust regression is a form of regression analysis designed to circumvent some limitations of traditional parametric and non-parametric methods. In this method we don?t have to assume that the outlier point is simply an extreme observation drawn from the tail of a normal distribution not compromising the validity of the regression results. In this work we have evaluated the capacity of robust regression to select the points in the experimental data used trying to avoid subjective choices. Based on this analysis we have developed a new work methodology that implies two basic steps: ? Evaluation of the improvement of linear fitting when consecutive points are eliminated based on R pvalue. In this way we consider the implications of reducing the number of points. ? Evaluation of the significance of slope difference between fitting with the two extremes points and fitted with the available points. We compare the results applying this methodology and the common used least squares one. The data selected for these comparisons are coming from experimental soil roughness transect and simulated based on middle point displacement method adding tendencies and noise. The results are discussed indicating the advantages and disadvantages of each methodology.
Resumo:
Leonhardt demonstrated (2009) that the 2D Maxwell Fish Eye lens (MFE) can focus perfectly 2D Helmholtz waves of arbitrary frequency, i.e., it can transport perfectly an outward (monopole) 2D Helmholtz wave field, generated by a point source, towards a "perfect point drain" located at the corresponding image point. Moreover, a prototype with λ/5 superresolution (SR) property for one microwave frequency has been manufactured and tested (Ma et al, 2010). Although this prototype has been loaded with an impedance different from the "perfect point drain", it has shown super-resolution property. However, neither software simulations nor experimental measurements for a broad band of frequencies have yet been reported. Here we present steady state simulations for two cases, using perfect drain as suggested by Leonhardt and without perfect drain as in the prototype. All the simulations have been done using a device equivalent to the MFE, called the Spherical Geodesic Waveguide (SGW). The results show the super-resolution up to λ/3000, for the system loaded with the perfect drain, and up to λ/500 for a not perfect load. In both cases super-resolution only happens for discrete number of frequencies. Out of these frequencies, the SGW does not show super-resolution in the analysis carried out.
Resumo:
La computación basada en servicios (Service-Oriented Computing, SOC) se estableció como un paradigma ampliamente aceptado para el desarollo de sistemas de software flexibles, distribuidos y adaptables, donde las composiciones de los servicios realizan las tareas más complejas o de nivel más alto, frecuentemente tareas inter-organizativas usando los servicios atómicos u otras composiciones de servicios. En tales sistemas, las propriedades de la calidad de servicio (Quality of Service, QoS), como la rapídez de procesamiento, coste, disponibilidad o seguridad, son críticas para la usabilidad de los servicios o sus composiciones en cualquier aplicación concreta. El análisis de estas propriedades se puede realizarse de una forma más precisa y rica en información si se utilizan las técnicas de análisis de programas, como el análisis de complejidad o de compartición de datos, que son capables de analizar simultáneamente tanto las estructuras de control como las de datos, dependencias y operaciones en una composición. El análisis de coste computacional para la composicion de servicios puede ayudar a una monitorización predictiva así como a una adaptación proactiva a través de una inferencia automática de coste computacional, usando los limites altos y bajos como funciones del valor o del tamaño de los mensajes de entrada. Tales funciones de coste se pueden usar para adaptación en la forma de selección de los candidatos entre los servicios que minimizan el coste total de la composición, basado en los datos reales que se pasan al servicio. Las funciones de coste también pueden ser combinadas con los parámetros extraídos empíricamente desde la infraestructura, para producir las funciones de los límites de QoS sobre los datos de entrada, cuales se pueden usar para previsar, en el momento de invocación, las violaciones de los compromisos al nivel de servicios (Service Level Agreements, SLA) potenciales or inminentes. En las composiciones críticas, una previsión continua de QoS bastante eficaz y precisa se puede basar en el modelado con restricciones de QoS desde la estructura de la composition, datos empiricos en tiempo de ejecución y (cuando estén disponibles) los resultados del análisis de complejidad. Este enfoque se puede aplicar a las orquestaciones de servicios con un control centralizado del flujo, así como a las coreografías con participantes multiples, siguiendo unas interacciones complejas que modifican su estado. El análisis del compartición de datos puede servir de apoyo para acciones de adaptación, como la paralelización, fragmentación y selección de los componentes, las cuales son basadas en dependencias funcionales y en el contenido de información en los mensajes, datos internos y las actividades de la composición, cuando se usan construcciones de control complejas, como bucles, bifurcaciones y flujos anidados. Tanto las dependencias funcionales como el contenido de información (descrito a través de algunos atributos definidos por el usuario) se pueden expresar usando una representación basada en la lógica de primer orden (claúsulas de Horn), y los resultados del análisis se pueden interpretar como modelos conceptuales basados en retículos. ABSTRACT Service-Oriented Computing (SOC) is a widely accepted paradigm for development of flexible, distributed and adaptable software systems, in which service compositions perform more complex, higher-level, often cross-organizational tasks using atomic services or other service compositions. In such systems, Quality of Service (QoS) properties, such as the performance, cost, availability or security, are critical for the usability of services and their compositions in concrete applications. Analysis of these properties can become more precise and richer in information, if it employs program analysis techniques, such as the complexity and sharing analyses, which are able to simultaneously take into account both the control and the data structures, dependencies, and operations in a composition. Computation cost analysis for service composition can support predictive monitoring and proactive adaptation by automatically inferring computation cost using the upper and lower bound functions of value or size of input messages. These cost functions can be used for adaptation by selecting service candidates that minimize total cost of the composition, based on the actual data that is passed to them. The cost functions can also be combined with the empirically collected infrastructural parameters to produce QoS bounds functions of input data that can be used to predict potential or imminent Service Level Agreement (SLA) violations at the moment of invocation. In mission-critical applications, an effective and accurate continuous QoS prediction, based on continuations, can be achieved by constraint modeling of composition QoS based on its structure, known data at runtime, and (when available) the results of complexity analysis. This approach can be applied to service orchestrations with centralized flow control, and choreographies with multiple participants with complex stateful interactions. Sharing analysis can support adaptation actions, such as parallelization, fragmentation, and component selection, which are based on functional dependencies and information content of the composition messages, internal data, and activities, in presence of complex control constructs, such as loops, branches, and sub-workflows. Both the functional dependencies and the information content (described using user-defined attributes) can be expressed using a first-order logic (Horn clause) representation, and the analysis results can be interpreted as a lattice-based conceptual models.
Resumo:
We present a novel general resource analysis for logic programs based on sized types.Sized types are representations that incorporate structural (shape) information and allow expressing both lower and upper bounds on the size of a set of terms and their subterms at any position and depth. They also allow relating the sizes of terms and subterms occurring at different argument positions in logic predicates. Using these sized types, the resource analysis can infer both lower and upper bounds on the resources used by all the procedures in a program as functions on input term (and subterm) sizes, overcoming limitations of existing analyses and enhancing their precision. Our new resource analysis has been developed within the abstract interpretation framework, as an extension of the sized types abstract domain, and has been integrated into the Ciao preprocessor, CiaoPP. The abstract domain operations are integrated with the setting up and solving of recurrence equations for both, inferring size and resource usage functions. We show that the analysis is an improvement over the previous resource analysis present in CiaoPP and compares well in power to state of the art systems.
Resumo:
We present a novel analysis for relating the sizes of terms and subterms occurring at diferent argument positions in logic predicates. We extend and enrich the concept of sized type as a representation that incorporates structural (shape) information and allows expressing both lower and upper bounds on the size of a set of terms and their subterms at any position and depth. For example, expressing bounds on the length of lists of numbers, together with bounds on the values of all of their elements. The analysis is developed using abstract interpretation and the novel abstract operations are based on setting up and solving recurrence relations between sized types. It has been integrated, together with novel resource usage and cardinality analyses, in the abstract interpretation framework in the Ciao preprocessor, CiaoPP, in order to assess both the accuracy of the new size analysis and its usefulness in the resource usage estimation application. We show that the proposed sized types are a substantial improvement over the previous size analyses present in CiaoPP, and also benefit the resource analysis considerably, allowing the inference of equal or better bounds than comparable state of the art systems.
Resumo:
We present a novel general resource analysis for logic programs based on sized types. Sized types are representations that incorporate structural (shape) information and allow expressing both lower and upper bounds on the size of a set of terms and their subterms at any position and depth. They also allow relating the sizes of terms and subterms occurring at different argument positions in logic predicates. Using these sized types, the resource analysis can infer both lower and upper bounds on the resources used by all the procedures in a program as functions on input term (and subterm) sizes, overcoming limitations of existing resource analyses and enhancing their precision. Our new resource analysis has been developed within the abstract interpretation framework, as an extension of the sized types abstract domain, and has been integrated into the Ciao preprocessor, CiaoPP. The abstract domain operations are integrated with the setting up and solving of recurrence equations for inferring both size and resource usage functions. We show that the analysis is an improvement over the previous resource analysis present in CiaoPP and compares well in power to state of the art systems.
Resumo:
The purpose of this work is to provide a description of the heavy rainfall phenomenon on statistical tools from a Spanish region. We want to quantify the effect of the climate change to verify the rapidity of its evolution across the variation of the probability distributions. Our conclusions have special interest for the agrarian insurances, which may make estimates of costs more realistically. In this work, the analysis mainly focuses on: The distribution of consecutive days without rain for each gauge stations and season. We estimate density Kernel functions and Generalized Pareto Distribution (GPD) for a network of station from the Ebro River basin until a threshold value u. We can establish a relation between distributional parameters and regional characteristics. Moreover we analyze especially the tail of the probability distribution. These tails are governed by law of power means that the number of events n can be expressed as the power of another quantity x : n(x) = x? . ? can be estimated as the slope of log-log plot the number of events and the size. The most convenient way to analyze n(x) is using the empirical probability distribution. Pr(X mayor que x) ? x-?. The distribution of rainfall over percentile of order 0.95 from wet days at the seasonal scale and in a yearly scale with the same treatment of tails than in the previous section.