947 resultados para Experiments.
Resumo:
Strength at extreme pressures (>1 Mbar or 100 GPa) and high strain rates (106-108 s-1) of materials is not well characterized. The goal of the research outlined in this thesis is to study the strength of tantalum (Ta) at these conditions. The Omega Laser in the Laboratory for Laser Energetics in Rochester, New York is used to create such extreme conditions. Targets are designed with ripples or waves on the surface, and these samples are subjected to high pressures using Omega’s high energy laser beams. In these experiments, the observational parameter is the Richtmyer-Meshkov (RM) instability in the form of ripple growth on single-mode ripples. The experimental platform used for these experiments is the “ride-along” laser compression recovery experiments, which provide a way to recover the specimens having been subjected to high pressures. Six different experiments are performed on the Omega laser using single-mode tantalum targets at different laser energies. The energy indicates the amount of laser energy that impinges the target. For each target, values for growth factor are obtained by comparing the profile of ripples before and after the experiment. With increasing energy, the growth factor increased.
Engineering simulations are used to interpret and correlate the measurements of growth factor to a measure of strength. In order to validate the engineering constitutive model for tantalum, a series of simulations are performed using the code Eureka, based on the Optimal Transportation Meshfree (OTM) method. Two different configurations are studied in the simulations: RM instabilities in single and multimode ripples. Six different simulations are performed for the single ripple configuration of the RM instability experiment, with drives corresponding to laser energies used in the experiments. Each successive simulation is performed at higher drive energy, and it is observed that with increasing energy, the growth factor increases. Overall, there is favorable agreement between the data from the simulations and the experiments. The peak growth factors from the simulations and the experiments are within 10% agreement. For the multimode simulations, the goal is to assist in the design of the laser driven experiments using the Omega laser. A series of three-mode and four-mode patterns are simulated at various energies and the resulting growth of the RM instability is computed. Based on the results of the simulations, a configuration is selected for the multimode experiments. These simulations also serve as validation for the constitutive model and the material parameters for tantalum that are used in the simulations.
By designing samples with initial perturbations in the form of single-mode and multimode ripples and subjecting these samples to high pressures, the Richtmyer-Meshkov instability is investigated in both laser compression experiments and simulations. By correlating the growth of these ripples to measures of strength, a better understanding of the strength of tantalum at high pressures is achieved.
Resumo:
A major part of the support for fundamental research on aquatic ecosystems continues to be provided by the Natural Environment Research Council (NERC). Funds are released for ”thematic” studies in a selected special topic or programme. ”Testable Models of Aquatic Ecosystems” was a Special Topic of the NERC, initiated in 1995, the aim of which was to promote ecological modelling by making new links between experimental aquatic biologists and state-of-the-art modellers. The Topic covered both marine and freshwater systems. This paper summarises projects on aspects of the responses of individual organisms to the effects of environmental variability, on the assembly, permanence and resilience of communities, and on aspects of spatial models. The authors conclude that the NERC Special Topic has been highly successful in promoting the development and application of models, most particularly through the interplay between experimental ecologists and formal modellers.
Resumo:
Ponds and shallow lakes are likely to be strongly affected by climate change, and by increase in environmental temperature in particular. Hydrological regimes and nutrient cycling may be altered, plant and animal communities may undergo changes in both composition and dynamics, and long-term and difficult to reverse switches between alternative stable equilibria may occur. A thorough understanding of the potential effects of increased temperature on ponds and shallow lakes is desirable because these ecosystems are of immense importance throughout the world as sources of drinking water, and for their amenity and conservation value. This understanding can only come through experimental studies in which the effects of different temperature regimes are compared. This paper reports design details and operating characteristics of a recently constructed experimental facility consisting of 48 aquatic microcosms which mimic the pond and shallow lake environment. Thirty-two of the microcosms can be heated and regulated to simulate climate change scenarios, including those predicted for the UK. The authors also summarise the current and future experimental uses of the microcosms.
Resumo:
Pseudo-thermal light has been widely used in ghost imaging experiments. In order to understand the differences between the pseudo-thermal source and thermal source, we propose a method to investigate whether a light source has cross spectral purity (CSP), and experimentally measure the cross spectral properties of the pseudo-thermal light source in near-field and far-field zones. Moreover we present a theoretical analysis of the cross spectral influence on ghost imaging. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Experiments were undertaken with the purpose to find out the tolerance of different species of salmon fish in acid hatching water and if different strains of the same species differ in their response. The study was made in the Fins-river hatchery, Marnardal and the assumption tested that the salmon and trout stock from Sorland are adapted to the more acid milieu, and thus more robust in acid water than are comparable fish stocks from areas where the water is only a bit acid or neutral.
Resumo:
This short translation summarises experiments on the production of a highly dispersible precipitate of calcium carbonate. The translation covers the 'Experimental section' (of the original larger paper) only.
Resumo:
In this work we extend to the multistage case two recent risk averse measures for two-stage stochastic programs based on first- and second-order stochastic dominance constraints induced by mixed-integer linear recourse. Additionally, we consider Time Stochastic Dominance (TSD) along a given horizon. Given the dimensions of medium-sized problems augmented by the new variables and constraints required by those risk measures, it is unrealistic to solve the problem up to optimality by plain use of MIP solvers in a reasonable computing time, at least. Instead of it, decomposition algorithms of some type should be used. We present an extension of our Branch-and-Fix Coordination algorithm, so named BFC-TSD, where a special treatment is given to cross scenario group constraints that link variables from different scenario groups. A broad computational experience is presented by comparing the risk neutral approach and the tested risk averse strategies. The performance of the new version of the BFC algorithm versus the plain use of a state-of-the-artMIP solver is also reported.
Resumo:
Within a wind farm, multiple turbine wakes can interact and have a substantial effect on the overall power production. This makes an understanding of the wake recovery process critically important to optimizing wind farm efficiency. Vertical-axis wind turbines (VAWTs) exhibit features that are amenable to dramatically improving this efficiency. However, the physics of the flow around VAWTs is not well understood, especially as it pertains to wake interactions, and it is the goal of this thesis to partially fill this void. This objective is approached from two broadly different perspectives: a low-order view of wind farm aerodynamics, and a detailed experimental analysis of the VAWT wake.
One of the contributions of this thesis is the development of a semi-empirical model of wind farm aerodynamics, known as the LRB model, that is able to predict turbine array configurations to leading order accuracy. Another contribution is the characterization of the VAWT wake as a function of turbine solidity. It was found that three distinct regions of flow exist in the VAWT wake: (1) the near wake, where periodic blade shedding of vorticity dominates; (2) a transition region, where growth of a shear-layer instability occurs; (3) the far wake, where bluff-body oscillations dominate. The wake transition can be predicted using a new parameter, the dynamic solidity, which establishes a quantitative connection between the wake of a VAWT and that of a circular cylinder. The results provide insight into the mechanism of the VAWT wake recovery and the potential means to control it.
Resumo:
Research into the production ecology of chalk streams using a large artificial recirculating stream is described. Physical chemical processes including calcium and inorganic phosphate levels, and exchange of gaseous carbon dioxide in both a simple closed system and a circulating system with gravel substrate have been monitored in both light and dark conditions. Further experiments were concerned with the seasonal changes in algal growth over the gravel substrate with constant water velocities and replenishment. The algal population, composed mainly of the diatoms Achnanthes minutissima, Meridion circulare, Nitzschia fonticola and Synedra ulna reached a peak in mid May and declined rapidly during June. Concentrations of phosphate phosphorus fell as the diatoms grew but was not thought to limit growth. Silicate concentrations followed the diatom cycle closely but never fell below 0.8 mg/l Si. It is possible that one of the nutrients may have been limiting the rate of growth due to steep diffusion gradients through the algal mat. In the last summer and autumn a hard calcareous crust composed of the green alga Gongrosira incrustans and the blue green alga Homeothrix varians , developed. The channel stream is compared with the natural conditions found in chalk streams.
Resumo:
The use of large plastic enclosures, or 'Lund tubes', in lakes as a semi-natural basin for experiments, approximating to lakes within lakes, is discussed. The advantages and disadvantages of the tubes were studied, and the results of investigations into the validity of studies using such tubes and the effects of fertilisers on phytoplankton are presented.
Resumo:
A number of authors have described the manner in which young salmonids, soon after emergence from the gravel, set up and defend territories. This leads to mortality or downstream displacement of the individuals which are unable to acquire territories and is widely accepted as the main method of population regulation amongst young salmonids. In some field experiments the fish were constrained in screened reaches and the option of downstream dispersal for the surplus fry was thus excluded. In order to explore some aspects of downstream dispersal more closely under conditions which gave more control than is obtained in a natural stream, four experimental channels were set up at Grassholme reservoir in Teesdale. The report describes the results of investigations on the timing and rate of downstream movement of young brown trout (Salmo trutta L.) and Atlantic salmon (Salmo salar L.) out of experimental channels, with special reference to the effect of water velocity on the rate of ”emigration”.
Resumo:
Aspartic acid, threonine, serine and other thermally unstable amino acids have been found in fine-grained elastic sediments of advanced geologic age. The presence of these compounds in ancient sediments conflicts with experimental data determined for their simple thermal decomposition.
Recent and Late Miocene sediments and their humic acid extracts, known to contain essentially complete suites of amino acids, were heated with H2O in a bomb at temperatures up to 500°C in order to compare the thermal decomposition characteristics of the sedimentary amino compounds.
Most of the amino acids found in protein hydrolyzates are obtained from the Miocene rock in amounts 10 to 100 times less than from the Recent sediment. The two unheated humic acids are rather similar despite their great age difference. The Miocene rock appears uncontaminated by Recent carbon.
Yields of amino acids generally decline in the heated Recent sediment. Some amino compounds apparently increase with heating time in the Miocene rock.
Relative thermal stabilities of the amino acids in sediments are generally similar to those determined using pure aqueous solutions. The relative thermal stabilities of glutamic acid, glycine, and phenylalanine vary in the Recent sediment but are uniform in the Miocene rock.
Amino acids may occur in both proteins and humic complexes in the Recent sediment, while they are probably only present in stabilized organic substances in the Miocene rock. Thermal decomposition of protein amino acids may be affected by surface catalysis in the Recent sediment. The apparent activation energy for the decomposition of alanine in this sediment is 8400 calories per mole. Yields of amino compounds from the heated sediments are not affected by thermal decomposition only.
Amino acids in sediments may only be useful for geothermometry in a very general way.
A better picture of the amino acid content of older sedimentary rocks may be obtained if these sediments are heated in a bomb with H2O at temperatures around 150°C prior to HCl hydrolysis.
Leucine-isoleucine ratios may prove to be useful as indicators of amino acid sources or for evaluating the fractionation of these substances during diagenesis. Leucine-isoleucine ratios of the Recent and Miocene sediments and humic acids are identical. The humic acids may have a continental source.
The carbon-nitrogen and carbon-hydrogen ratios of sediments and humic acids increase with heating time and temperature. Ratios comparable to those in some kerogens are found in the severely heated Miocene sediment and humic acid.