959 resultados para Expenditure-based segmentation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Texture is one of the most important visual attributes used in image analysis. It is used in many content-based image retrieval systems, where it allows the identification of a larger number of images from distinct origins. This paper presents a novel approach for image analysis and retrieval based on complexity analysis. The approach consists of a texture segmentation step, performed by complexity analysis through BoxCounting fractal dimension, followed by the estimation of complexity of each computed region by multiscale fractal dimension. Experiments have been performed with MRI database in both pattern recognition and image retrieval contexts. Results show the accuracy of the method and also indicate how the performance changes as the texture segmentation process is altered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Texture is an important visual attribute used to describe the pixel organization in an image. As well as it being easily identified by humans, its analysis process demands a high level of sophistication and computer complexity. This paper presents a novel approach for texture analysis, based on analyzing the complexity of the surface generated from a texture, in order to describe and characterize it. The proposed method produces a texture signature which is able to efficiently characterize different texture classes. The paper also illustrates a novel method performance on an experiment using texture images of leaves. Leaf identification is a difficult and complex task due to the nature of plants, which presents a huge pattern variation. The high classification rate yielded shows the potential of the method, improving on traditional texture techniques, such as Gabor filters and Fourier analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this thesis, a new algorithm has been proposed to segment the foreground of the fingerprint from the image under consideration. The algorithm uses three features, mean, variance and coherence. Based on these features, a rule system is built to help the algorithm to efficiently segment the image. In addition, the proposed algorithm combine split and merge with modified Otsu. Both enhancements techniques such as Gaussian filter and histogram equalization are applied to enhance and improve the quality of the image. Finally, a post processing technique is implemented to counter the undesirable effect in the segmented image. Fingerprint recognition system is one of the oldest recognition systems in biometrics techniques. Everyone have a unique and unchangeable fingerprint. Based on this uniqueness and distinctness, fingerprint identification has been used in many applications for a long period. A fingerprint image is a pattern which consists of two regions, foreground and background. The foreground contains all important information needed in the automatic fingerprint recognition systems. However, the background is a noisy region that contributes to the extraction of false minutiae in the system. To avoid the extraction of false minutiae, there are many steps which should be followed such as preprocessing and enhancement. One of these steps is the transformation of the fingerprint image from gray-scale image to black and white image. This transformation is called segmentation or binarization. The aim for fingerprint segmentation is to separate the foreground from the background. Due to the nature of fingerprint image, the segmentation becomes an important and challenging task. The proposed algorithm is applied on FVC2000 database. Manual examinations from human experts show that the proposed algorithm provides an efficient segmentation results. These improved results are demonstrating in diverse experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis aims to present a color segmentation approach for traffic sign recognition based on LVQ neural networks. The RGB images were converted into HSV color space, and segmented using LVQ depending on the hue and saturation values of each pixel in the HSV color space. LVQ neural network was used to segment red, blue and yellow colors on the road and traffic signs to detect and recognize them. LVQ was effectively applied to 536 sampled images taken from different countries in different conditions with 89% accuracy and the execution time of each image among 31 images was calculated in between 0.726sec to 0.844sec. The method was tested in different environmental conditions and LVQ showed its capacity to reasonably segment color despite remarkable illumination differences. The results showed high robustness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Wooden railway sleeper inspections in Sweden are currently performed manually by a human operator; such inspections are based on visual analysis. Machine vision based approach has been done to emulate the visual abilities of human operator to enable automation of the process. Through this process bad sleepers are identified, and a spot is marked on it with specific color (blue in the current case) on the rail so that the maintenance operators are able to identify the spot and replace the sleeper. The motive of this thesis is to help the operators to identify those sleepers which are marked by color (spots), using an “Intelligent Vehicle” which is capable of running on the track. Capturing video while running on the track and segmenting the object of interest (spot) through this vehicle; we can automate this work and minimize the human intuitions. The video acquisition process depends on camera position and source light to obtain fine brightness in acquisition, we have tested 4 different types of combinations (camera position and source light) here to record the video and test the validity of proposed method. A sequence of real time rail frames are extracted from these videos and further processing (depending upon the data acquisition process) is done to identify the spots. After identification of spot each frame is divided in to 9 regions to know the particular region where the spot lies to avoid overlapping with noise, and so on. The proposed method will generate the information regarding in which region the spot lies, based on nine regions in each frame. From the generated results we have made some classification regarding data collection techniques, efficiency, time and speed. In this report, extensive experiments using image sequences from particular camera are reported and the experiments were done using intelligent vehicle as well as test vehicle and the results shows that we have achieved 95% success in identifying the spots when we use video as it is, in other method were we can skip some frames in pre-processing to increase the speed of video but the segmentation results we reduced to 85% and the time was very less compared to previous one. This shows the validity of proposed method in identification of spots lying on wooden railway sleepers where we can compromise between time and efficiency to get the desired result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Industrial companies in developing countries are facing rapid growths, and this requires having in place the best organizational processes to cope with the market demand. Sales forecasting, as a tool aligned with the general strategy of the company, needs to be as much accurate as possible, in order to achieve the sales targets by making available the right information for purchasing, planning and control of production areas, and finally attending in time and form the demand generated. The present dissertation uses a single case study from the subsidiary of an international explosives company based in Brazil, Maxam, experiencing high growth in sales, and therefore facing the challenge to adequate its structure and processes properly for the rapid growth expected. Diverse sales forecast techniques have been analyzed to compare the actual monthly sales forecast, based on the sales force representatives’ market knowledge, with forecasts based on the analysis of historical sales data. The dissertation findings show how the combination of both qualitative and quantitative forecasts, by the creation of a combined forecast that considers both client´s demand knowledge from the sales workforce with time series analysis, leads to the improvement on the accuracy of the company´s sales forecast.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of outcrop and subsurface information, including micropaleontological data, facies and sequence stratigraphic studies, and oxygen isotope analysis, allow us to present a new stratigraphic model for the Cretaceous continental deposits of the Bauru Group, Brazil. Thirty-eight fossil taxa were recovered from these deposits, including 29 species of ostracodes and 9 species of charophytes. Seven of these ostracode species and three subspecies are new and formally described here. The associations of Chara barbosai - Ilyocypris cf. riograndensis, found in the Adamantina Formation, and Amblyochara sp. - Neuquenocypris minor mineira nov. subsp., found in the Marília Formation. Ponte Alta Member, represent two distinct groups that are respectively Turonian-Santonian and Maastrichtian (probably Late Maastrichtian) in age. Therefore, a hiatus, encompassing more than 11 Ma, separates those two formations. From bottom to top, four depositional cycles were recognized in the Bauru Group in western São Paulo: cycles 1 and 2 belong to Caiuá Formation (fluvio-lacustrine and lacustrine deposits in the Presidente Prudente region), cycle 3 to the Santo Anastácio and lower Adamantina Formation (respectively fluvial and lacustrine deposits), and cycle 4 to the upper Adamantina Formation (fluvio-lacustrine facies). An erosional unconformity separates the Caiuá and Santo Anastácio Formations (between cycles 2 and 3). The Marília Formation is a distinct unit from the underlying succession; it does not occur in western São Paulo, but is found in restricted areas of São Paulo, Minas Gerais, Mato Grosso do Sul and Goiás States. During the deposition of the Bauru Group (Aptian? to Maastrichtian) the climate was hot and arid-semiarid. Shallow lakes underwent fluctuations in expansion (wet phases) and contraction (dry phases), as well as variations in salinity. During the deposition of the Adamantina Formation (Turonian-Santonian) there were long, dry periods that caused segmentation of large lakes (due to topographic irregularities in the basaltic substrate) and sometimes exposures of the lake floors; when flooded these lake floors were colonized by extensive meadows of single species of charophytes. Small ephemeral ponds, that were hydrochemically unstable and colonized by multiple species of charophytes, were the depositional sites for the marls and mudstones of Ponte Alta Member (Maastrichtian, Late Maastrichtian?). Our micropaleontological age control, combined with the Late Cretaceous ages of volcanic ashes found in the southeastern Brazil coastal basins, and the stratigraphic position of analcimites from the Jaboticabal-SP region, suggest a Late Coniacian-Santonian age for important magmatic events occurred in the interior of Brazil (north-central São Paulo State, Triângulo Mineiro, and southwestern Goiás State).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose new circuits for the implementation of Radial Basis Functions such as Gaussian and Gaussian-like functions. These RBFs are obtained by the subtraction of two differential pair output currents in a folded cascode configuration. We also propose a multidimensional version based on the unidimensional circuits. SPICE simulation results indicate good functionality. These circuits are intended to be applied in the implementation of radial basis function networks. One possible application of these networks is transducer signal conditioning in aircraft and spacecraft vehicles onboard telemetry systems. Copyright 2008 ACM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we propose a novel automatic cast iron segmentation approach based on the Optimum-Path Forest classifier (OPF). Microscopic images from nodular, gray and malleable cast irons are segmented using OPF, and Support Vector Machines (SVM) with Radial Basis Function and SVM without kernel mapping. Results show accurate and fast segmented images, in which OPF outperformed SVMs. Our work is the first into applying OPF for automatic cast iron segmentation. © 2010 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The digital image processing has been applied in several areas, especially where it is necessary use tools for feature extraction and to get patterns of the studied images. In an initial stage, the segmentation is used to separate the image in parts that represents a interest object, that may be used in a specific study. There are several methods that intends to perform such task, but is difficult to find a method that can easily adapt to different type of images, that often are very complex or specific. To resolve this problem, this project aims to presents a adaptable segmentation method, that can be applied to different type of images, providing an better segmentation. The proposed method is based in a model of automatic multilevel thresholding and considers techniques of group histogram quantization, analysis of the histogram slope percentage and calculation of maximum entropy to define the threshold. The technique was applied to segment the cell core and potential rejection of tissue in myocardial images of biopsies from cardiac transplant. The results are significant in comparison with those provided by one of the best known segmentation methods available in the literature. © 2010 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thermal faceprint has been paramount in the last years. Since we can handle with face recognition using images acquired in the infrared spectrum, an unique individual's signature can be obtained through the blood vessels network of the face. In this work, we propose a novel framework for thermal faceprint extraction using a collection of graph-based techniques, which were never used to this task up to date. A robust method of thermal face segmentation is also presented. The experiments, which were conducted over the UND Collection C dataset, have showed promising results. © 2011 Springer-Verlag.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Latent fingerprints are routinely found at crime scenes due to the inadvertent contact of the criminals' finger tips with various objects. As such, they have been used as crucial evidence for identifying and convicting criminals by law enforcement agencies. However, compared to plain and rolled prints, latent fingerprints usually have poor quality of ridge impressions with small fingerprint area, and contain large overlap between the foreground area (friction ridge pattern) and structured or random noise in the background. Accordingly, latent fingerprint segmentation is a difficult problem. In this paper, we propose a latent fingerprint segmentation algorithm whose goal is to separate the fingerprint region (region of interest) from background. Our algorithm utilizes both ridge orientation and frequency features. The orientation tensor is used to obtain the symmetric patterns of fingerprint ridge orientation, and local Fourier analysis method is used to estimate the local ridge frequency of the latent fingerprint. Candidate fingerprint (foreground) regions are obtained for each feature type; an intersection of regions from orientation and frequency features localizes the true latent fingerprint regions. To verify the viability of the proposed segmentation algorithm, we evaluated the segmentation results in two aspects: a comparison with the ground truth foreground and matching performance based on segmented region. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography