988 resultados para Expanded Bed Adsorption
Resumo:
Adsorption of CO has been investigated on the surfaces of polycrystalline transition metals as well as alloys by employing electron energy loss spectroscopy (eels) and ultraviolet photoelectron spectroscopy (ups). CO adsorbs on polycrystalline transition metal surfaces with a multiplicity of sites, each being associated with a characteristic CO stretching frequency; the relative intensities vary with temperature as well as coverage. Whilst at low temperatures (80- 120 K), low coordination sites are stabilized, the higher coordination sites are stabilized at higher temperatures (270-300 K). Adsorption on surfaces of polycrystalline alloys gives characteristic stretching frequencies due to the constituent metal sites. Alloying, however, causes a shift in the stretching frequencies, indicating the effect of the band structure on the nature of adsorption. The up spectra provide confirmatory evidence for the existence of separate metal sites in the alloys as well as for the high-temperature and low-temperature phases of adsorbed CO.
Resumo:
Digital image
Resumo:
A thermodynamic analysis is presented for the two stage thermal compression process for an adsorption refrigeration cycle with HFC-134a as the working fluid and activated carbon as the adsorbent. Three specimens of varying achievable packing densities were evaluated. The influence of evaporating, condensing/adsorption and desorption temperatures was assessed through three performance indicators, namely,the uptake efficiency, the coefficient of performance and the exergetic efficiency. Conditions under which a two stage thermal compression process performs better than the single stage unit are identified. It is concluded that two stage thermal compression will be a viable proposition when the heat source temperature is low or when adsorption characteristics are weak or when adequate packing densities are difficult to realize. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
It is shown that the effect of adsorption of inert molecules on electrode reaction rates is completely accounted for, by introducing into the rate equation, adsorption-induced changes in both the effective electrode area as well as in the electrostatic potential at the reaction site with an additional term for the noncoulombic interaction between the reactant and the adsorbate. The electrostatic potential at the reaction site due to the adsorbed layer is calculated using a model of discretely-distributed molecules in parallel orientation when adsorbed on the electrode with an allowance for thermal agitation. The resulting expression, which is valid for the limiting case of low coverages, is used to predict the types of molecular surfactants that are most likely to be useful for acceleration and inhibition of electrode reactions.
Resumo:
To find out whether food-producing animals (FPAs) are a source of extraintestinal expanded-spectrum cephalosporin-resistant Escherichia coli (ESCR-EC) infections in humans, Medline, Embase, and the Cochrane Database of Systematic Reviews were systematically reviewed. Thirty-four original, peer-reviewed publications were identified for inclusion. Six molecular epidemiology studies supported the transfer of resistance via whole bacterium transmission (WBT), which was best characterized among poultry in the Netherlands. Thirteen molecular epidemiology studies supported transmission of resistance via mobile genetic elements, which demonstrated greater diversity of geography and host FPA. Seventeen molecular epidemiology studies did not support WBT and two did not support mobile genetic element-mediated transmission. Four observational epidemiology studies were consistent with zoonotic transmission. Overall, there is evidence that a proportion of human extraintestinal ESCR-EC infections originate from FPAs. Poultry, in particular, is probably a source, but the quantitative and geographical extent of the problem is unclear and requires further investigation.
Resumo:
On the basis of dodecahedral structure of a foam bed, a model to predict conversion in a foam bed contactor with mass transfer with chemical reaction has been developed. To verify the proposed model, experiments have been carried out in a semi-batch apparatus for the absorption of lean CO2 gas in a foam of sodium hydroxide solution. The proposed model predicts fairly well the experimentally found absorption values.
Resumo:
Two- and three-state models for the adsorption of organic compounds at the electrodelelectrolyte interface are proposed. Different size requirements, if any, for the neutral molecule and the adsorbing solvent are also considered. It is shown how the empirical, generalised surface layer (GSL) relationship (between the potential difference and the electrode charge) formulated by Damaskin et a / . can be understood at the molecular level.
Resumo:
Abstract is not available.
Resumo:
In 1916, the Jewish community of Boston established Beth Israel Hospital on Townsend Street in Roxbury to provide health care to immigrants in the area. Although accessible to everyone, the hospital provided Yiddish-speaking services for Eastern European Jewish immigrants and served kosher food, as well as conducted Jewish religious services. In 1928 the hospital entered into a teaching agreement with Harvard Medical School, Tufts University, and Simmons College. Shortly thereafter, the hospital moved to its current location in the Longwood area of Boston and expanded to a 220-bed operation. During 1935-1936, at the height of the Depression, Beth Israel spent 1.5 million dollars in free patient care and was only one of two local hospitals to offer health care to people on welfare. In 1996, Beth Israel Hospital merged with Deaconess Medical Center and became Beth Israel Deaconess Medical Center. This collection contains reports, pamphlets and hospital publications.
Resumo:
A rate equation is developed for the liquid phase hydrogenation of aniline over cylindrical catalyst pellets of 30% nickel deposited on clay in a trickle bed reactor. The equation takes into account external and internal diffusional limitations, and describes the experimental data adequately. The hydrogenation reaction is first order with respect to hydrogen and zero order with respect to aniline. Effectiveness factors are in the range 0.003-0.03. Apparent activation energy of the reaction is 12.7 kcal/mol and true activation energy is 39.6 kcal/mol.
Resumo:
In recent years a variety of mobile apps, wearable technologies and embedded systems have emerged that allow individuals to track the amount and the quality of their sleep in their own beds. Despite the widespread adoption of these technologies, little is known about the challenges that current users face in tracking and analysing their sleep. Hence we conducted a qualitative study to examine the practices of current users of sleep tracking technologies and to identify challenges in current practice. Based on data collected from 5 online forums for users of sleep-tracking technologies, we identified 22 different challenges under the following 4 themes: tracking continuity, trust, data manipulation, and data interpretation. Based on these results, we propose 6 design opportunities to assist researchers and practitioners in designing sleep-tracking technologies.
Resumo:
The phenomenon of adsorption is governed by the various interactions among the constituents of the interface and the forms of adsorption isotherms hold the clue to the nature of the se in teractions. An understanding of this phenomenon may be said to be complete only when the parameters occurring in such expres - sions for isotherms are interpretable in terms of molecular/electronic interactions.This objective viz. expressing the composition of the isotherm parameters through a microscopic modelling is by no means a simple one. Such a task is particularly made difficult in the case of charged interfaces where idealisation is difficult to make and, when made, not so easy to justify.
Resumo:
Fluidized bed reactor technology was investigated as a means of developing a new simple and low cost process for coal desulfurization. Preliminary experimental results obtained in a 2.54 cm batch fluidized bed reactor have shown that over 80% total sulfur reductions can be achieved by sequential chlorination and dechlorination/ hydrodesulfurization of high sulfur pulverized coals. Proximate and ultimate analyses of desulfurized coals have revealed enhanced carbon and fixed carbon levels and substantially reduced volatile, oxygen and hydrogen contents. While there was a minor increase in the ash content and heating value, nitrogen and chlorine contents were essentially unchanged. Compared to an earlier slurry phase process, the fluidized bed reactors process has specific advantages such as shorter reaction times, fewer processing steps and reduced reactant requirements. A fluidized bed reactor process may thus have a potential of being developed into a simple and economic means of converting high sulfur coals to environmentally acceptable fuels.