931 resultados para Everglades national park
Resumo:
Mass inventories of total Hg (THg) and methylmercury (MeHg) and mass budgets of Hg newly deposited during the 2005 dry and wet seasons were constructed for the Everglades. As a sink for Hg, the Everglades has accumulated 914, 1138, 4931, and 7602 kg of legacy THg in its 4 management units, namely Water Conservation Area (WCA) 1, 2, 3, and the Everglades National Park (ENP), respectively, with most Hg being stored in soil. The current annual Hg inputs account only for 1−2% of the legacy Hg. Mercury transport across management units during a season amounts to 1% or less of Hg storage, except for WCA 2 where inflow inputs can contribute 4% of total MeHg storage. Mass budget suggests distinct spatiality for cycling of seasonally deposited Hg, with significantly lower THg fluxes entering water and floc in ENP than in the WCAs. Floc in WCAs can retain a considerable fraction (around 16%) of MeHg produced from the newly deposited Hg during the wet season. This work is important for evaluating the magnitude of legacy Hg contamination and for predicting the fate of new Hg in the Everglades, and provides a methodological example for large-scale studies on Hg cycling in wetlands.
Resumo:
Variation in physical gradients and production along estuaries can alter species compositions. Spatiotemporal variation in abundance and distribution of palaemonid shrimp species was investigated in relation to seasonal freshwater inputs and salinity in the Shark River Estuary, Everglades National Park, Florida, USA. Using trapping techniques, multiple sites were sampled repeatedly extending from the headwaters to the Gulf of Mexico. Stable isotope analyses were also performed on a subset of samples. Five palaemonid species occurred in the samples: Palaemonetes paludosus (Gibbes, 1850), Palaemonetes pugio (Holthuis, 1949), Palaemonetes intermedius (Holthuis, 1949), Palaemon floridanus (Chace, 1942), and Leander paulensis(Ortmann, 1897). Overall, shrimp catches in traps doubled in the dry season. Catches in the upper estuary were dominated by P.paludosus, particularly in the wet season, while catch per unit effort at the most downstream and highest salinity sites were dominated by P. floridanus. At mid-estuary, several species co-occurred. δ15n analyses revealed that most species filled similar roles in the community, with the exception of P. paludosus, which shifted from enrichment in the dry season to depletion in the wet season as it expanded downstream in the estuary. Palaemonid δ13C values varied between sites and seasons, with shrimp in upstream sites being more depleted. These data suggest that changes in salinity regimes resulting from Everglades restoration efforts may result in species replacement, with potential implications for trophic dynamics.
Resumo:
1. Our goal was to quantify short-term phosphorus (P) partitioning and identify the ecosystem components important to P cycling in wetland ecosystems. To do this, we added P radiotracer to oligotrophic, P-limited Everglades marshes. 32PO4 was added to the water column in six 1-m2 enclosed mesocosms located in long-hydroperiod marshes of Shark River Slough, Everglades National Park. Ecosystem components were then repeatedly sampled over 18 days. 2. Water column particulates (>0.45 μm) incorporated radiotracer within the first minute after dosing and stored 95–99% of total water column 32P activity throughout the study. Soluble (<0.45 μm) 32P in the water column, in contrast, was always <5% of the 32P in surface water. Periphyton, both floating and attached to emergent macrophytes, had the highest specific activity of 32P (Bq g−131P) among the different ecosystem components. Fish and aquatic macroinvertebrates also had high affinity for P, whereas emergent macrophytes, soil and flocculent detrital organic matter (floc) had the lowest specific activities of radiotracer. 3. Within the calcareous, floating periphyton mats, 81% of the initial 32P uptake was associated with Ca, but most of this 32P entered and remained within the organic pool (Ca-associated = 14% of total) after 1 day. In the floc layer, 32P rapidly entered the microbial pool and the labile fraction was negligible for most of the study. 4. Budgeting of the radiotracer indicated that 32P moved from particulates in the water column to periphyton and floc and then to the floc and soil over the course of the 18 day incubations. Floc (35% of total) and soil (27%) dominated 32P storage after 18 days, with floating periphyton (12%) and surface water (10%) holding smaller proportions of total ecosystem 32P. 5. To summarise, oligotrophic Everglades marshes exhibited rapid uptake and retention of labile 32P. Components dominated by microbes appear to control short-term P cycling in this oligotrophic ecosystem.
Resumo:
Short-term (daily) and seasonal variations in concentration and flux of dissolved organic carbon (DOC) were examined over 15 tidal cycles in a riverine mangrove wetland along Shark River, Florida in 2003. Due to the influence of seasonal rainfall and wind patterns on Shark River’s hydrology, samplings were made to include wet, dry and transitional (Norte) seasons. We used a flume extending from a tidal creek to a basin forest to measure vertical (vegetated soil/water column) and horizontal (mangrove forest/tidal creek) flux of DOC. We found significant (p < 0.05) variations in surface water temperature, salinity, conductivity, pH and mean concentration of DOC with season. Water temperature and salinity followed seasonal patterns of air temperature and rainfall, while mean DOC concentration was highest during the dry season (May), followed by the wet (October) and ‘Norte’ (December) seasons. This pattern of DOC concentration may be due to a combination of litter production and inundation pattern of the wetland. In contrast to daily (between tides) variation in DOC flux between the mangrove forest and tidal creek, daily variations of mean water quality were not significant. However, within-tide variation of DOC flux, dissolved oxygen content and salinity was observed. This indicated that the length of inundation and water source (freshwater vs. saltwater) variation across tidal cycles influenced water quality and DOC flux in the water column. Net DOC export was measured in October and December, suggesting the mangrove forest was a source of DOC to the adjacent tidal creek during these periods. Net annual export of DOC from the fringe mangrove to both the tidal creek and basin mangrove forest was 56 g C m−2 year−1. The seasonal pattern in our flux results indicates that DOC flux from this mangrove forest may be governed by both freshwater discharge and tidal range.
Resumo:
A major goal of the Comprehensive Everglades Restoration Plan (CERP) is to recover historical (pre-drainage) wading bird rookeries and reverse marked decreases in wading bird nesting success in Everglades National Park. To assess efforts to restore wading birds, a trophic hypothesis was developed that proposes seasonal concentrations of small-fish and crustaceans (i.e., wading bird prey) were a key factor to historical wading bird success. Drainage of the Everglades has diminished these seasonal concentrations, leading to a decline in wading bird nesting and displacing them from their historical nesting locations. The trophic hypothesis predicts that restoring historical hydrological patterns to pre-drainage conditions will recover the timing and location of seasonally concentrated prey, ultimately restoring wading bird nesting and foraging to the southern Everglades. We identified a set of indicators using small-fish and crustaceans that can be predicted from hydrological targets and used to assess management success in regaining suitable wading bird foraging habitat. Small-fish and crustaceans are key components of the Everglades food web and are sensitive to hydrological management, track hydrological history with little time lag, and can be studied at the landscape scale. The seasonal hydrological variation of the Everglades that creates prey concentrations presents a challenge to interpreting monitoring data. To account for the variable hydrology of the Everglades in our assessment, we developed dynamic hydrological targets that respond to changes in prevailing regional rainfall. We also derived statistical relationships between density and hydrological drivers for species representing four different life-history responses to drought. Finally, we use these statistical relationships and hydrological targets to set restoration targets for prey density. We also describe a report-card methodology to communicate the results of model-based assessments for communication to a broad audience.
Resumo:
This report is an assessment of the conditions of natural resources in Biscayne National Park (BNP) based on the compilation, review and evaluation of existing information on the Park’s natural resources. This review evaluates threats and stressors, and is intended to improve understanding of BNP resources to help guide Park management to address the identified threats, which are supported by enhanced data collection, research and assessment efforts. The report is focused on broad resource components, namely terrestrial resources and aquatic systems including: wetlands, canals, bay waters, marine/reef areas and ground waters. Biotic and abiotic resource components are considered in the review.
Resumo:
National park managers are the subjects in the fifth segment of a study examining the skills and abilities needed to be successful tourism managers. The authors discuss these skills and their impact on successful tourism management.
Resumo:
The Florida Everglades is a highly diverse socionatural landscape that historically spanned much of the south Florida peninsula. Today, the Florida Everglades is an iconic but highly contested conservation landscape. It is the site of one of the world's largest publicly funded ecological restoration programs, estimated to cost over $8 billion (U.S. GAO 2007), and it is home to over two million acres of federally protected lands, including the Big Cypress National Preserve and Everglades National Park. However, local people's values, practices and histories overlap and often conflict with the global and eco-centric values linked to Everglades environmental conservation efforts, sparking environmental conflict. My dissertation research examined the cultural politics of nature associated with two Everglades conservation and ecological restoration projects: 1) the creation and stewardship of the Big Cypress National Preserve, and 2) the Tamiami Trail project at the northern boundary of Everglades National Park. Using multiple research methods including ethnographic fieldwork, archival research, participant observation, surveys and semi-structured interviews, I documented how these two projects have shaped environmental claims-making strategies to Everglades nature on the part of environmental NGOs, the National Park Service and local white outdoorsmen. In particular, I examined the emergence of an oppositional white identity called the Gladesmen Culture. My findings include the following: 1) just as different forms of nature are historically produced, contingent and power-laden, so too are different claims to Everglades nature; 2) identity politics are an integral dimension of Everglades environmental conflicts; and 3) the Big Cypress region's history and contemporary conflicts are shaped by the broader political economy of development in south Florida. My dissertation concluded that identity politics, class and property relations have played a key, although not always obvious, role in shaping Everglades history and environmental claims-making, and that they continue to influence contemporary Everglades environmental conflicts.
Resumo:
In recent years, the Internet has become the medium of choice in distance education, and a prominent delivery tool in many hospitality management programs. When students cannot be educated on site, web-based education has proven to be the next best thing to in-person instruction. The authors describe a project in which the Internet is used to educate National Park Service concession specialists, exploring the reasons the project was instigated, its development and funding, and educational challenges and solutions. Such web-based instruction can be used as a means to attract outside grants and revenues for hospitality management programs.
Resumo:
In this special issue, we report on efforts to reconstruct paleoclimate/paleolimnology of the Florida Everglades, applying a wide range of techniques including sedimentological, micropaleontological and biogeochemical approaches. The papers included here describe results obtained by studies conducted in Everglades National Park and the greater South Florida Everglades by Florida Coastal Everglades Long Term Ecological Research Program (FCE LTER) collaborators. This multi-investigator project contrasts nutrient dynamics in two inland-to-marine transects aligned along separate drainages in southern Florida that differ in their susceptibility to coastal pressures and in volume of freshwater delivery. This effort focuses on the paleoecological aspects of FCE LTER research that address scales of ecosystem transformations driven by climate variability and change and human activities. The central question addressed by this body of work is “How is the shape of the freshwater-to-marine gradient in the Florida coastal Everglades controlled by changes in climate, freshwater inflow (i.e. through human activities), and disturbance (i.e. sea level rise, hurricanes, fire)?”
Resumo:
Florida Bay is more saline than it was historically, and reduced freshwater flows may lead to more phosphorus inputs to the mangrove ecotone from the marine end-member. This is important given plans to restore freshwater flow into eastern Florida Bay. We investigated the relationships between salinity, nutrients, and hydrologic variables in the mangrove ecotone of Taylor Slough. We expected that total phosphorus (TP) would increase with salinity, reflecting a downstream marine source, while total nitrogen (TN) would increase with flow in the mangrove ecotone. Despite expectations of increased flows improving the ecological health of lower Taylor Slough and Florida Bay, total nitrogen (TN) and total phosphorus (TP) dynamics may shift in response to new conditions of flow and salinity as well as organic carbon, N, and P availability. Our results showed that TP concentrations are more discharge-driven while TN is more variable and potentially derived from different sources along the flow path from the freshwater Everglades marshes to Florida Bay. Increased flow of freshwater through Taylor Slough will likely decrease TP concentrations in this historically oligotrophic and P-limited ecosystem. However, more studies along the mangrove ecotone is needed to understand how increased flows will affect nitrogen dynamics relative to phosphorus.
Resumo:
Within the marl prairie grasslands of the Florida Everglades, USA, the combined effects of fire and flooding usually lead to very significant changes in tree island structure and composition. Depending on fire severity and post-fire hydroperiod, these effects vary spatially and temporally throughout the landscape, creating a patchy post-fire mosaic of tree islands with different successional states. Through the use of the Normalized Difference Vegetation Index (NDVI) and three predictor variables (marsh water table elevation at the time of fire, post-fire hydroperiod, and tree island size), along with logistic regression analysis, we examined the probability of tree island burning and recovering following the Mustang Corner Fire (May to June 2008) in Everglades National Park. Our data show that hydrologic conditions during and after fire, which are under varying degrees of management control, can lead to tree island contraction or loss. More specifically, the elevation of the marsh water table at the time of the fire appears to be the most important parameter determining the severity of fire in marl prairie tree islands. Furthermore, in the post-fire recovery phase, both tree island size and hydroperiod during the first year after the fire played important roles in determining the probability of tree island recovery, contraction, or loss.
Resumo:
Marjory Stoneman Douglass delivering presentation, April 3, 1973. Marjory Stoneman Douglas was born on April 7, 1890. In South Florida she is best known for her environmental advocacy passionately fighting for the protection and preservation of the Florida Everglades. As a writer, her most influential book was the book The Everglades: River of Grass (1947), which redefined the popular conception of the Everglades as a treasured river instead of a worthless swamp. Moving to South Florida to pursuit a career in journalism, she began writing for the Miami Herald newspaper and then worked as freelance writer, producing over one hundred short stories that were published in popular magazines. Throughout her long life (lived until age 108), she received numerous awards, including the Presidential Medal of Freedom and was inducted into several halls of fame. She died on May 14, 1998. A statue of her invites visitors at Fairchild Tropical Botanic Garden in Miami, Florida to sit with her statue and contemplate the garden. Two South Florida public schools are named in her honor: Broward County Public Schools' Marjory Stoneman Douglas High School and Miami-Dade County Public Schools' Marjory Stoneman Douglas Elementary School.
Resumo:
In 2005 we began a multi-year intensive monitoring and assessment study of tropical hardwood hammocks within two distinct hydrologic regions in Everglades National Park, under funding from the CERP Monitoring and Assessment Program. In serving as an Annual Report for 2010, this document, reports in detail on the population dynamics and status of tropical hardwood hammocks in Shark Slough and adjacent marl prairies during a 4-year period between 2005 and 2009. 2005-09 was a period that saw a marked drawdown in marsh water levels (July 2006 - July 2008), and an active hurricane season in 2005 with two hurricanes, Hurricane Katrina and Wilma, making landfall over south Florida. Thus much of our focus here is on the responses of these forests to annual variation in marsh water level, and on recovery from disturbance. Most of the data are from 16 rectangular permanent plots of 225-625 m2 , with all trees mapped and tagged, and bi-annual sampling of the tree, sapling, shrub, and herb layer in a nested design. At each visit, canopy photos were taken and later analyzed for determination of interannual variation in leaf area index and canopy openness. Three of the plots were sampled at 2-month intervals, in order to gain a better idea of seasonal dynamics in litterfall and litter turnover. Changes in canopy structure were monitored through a vertical line intercept method.