966 resultados para Event-related potentials
Resumo:
Disturbances of the motor and sensory system as well as an alteration of the preparation of movements have been reported to play a role in the pathogenesis of dystonias. However, it is unclear whether higher aspects of cortical – like cognitive – functions are also involved. Recently, the NoGo-anteriorization (NGA) elicited with a visual continuous performance test (CPT) during recording of a 21-channel electroencephalogram has been proposed as an electrophysiological standard-index for cognitive response control. The NGA consists of a more anterior location of the positive area of the brain electrical field associated with the inhibition (NoGo-condition) compared with that of the execution (Go-condition) of a prepared motor response in the CPT. This response control paradigm was applied in 16 patients with writer’s cramp (WC) and 14 age matched healthy controls. Topographical analysis of the associated event-related potentials revealed a significant (P < 0.05) NGA effect for both patients and controls. Moreover, patients with WC showed a significantly higher global field power value (P < 0.05) in the Go-condition and a significantly higher difference-amplitude (P < 0.05) in the NoGo-condition. A source location analysis with the low resolution electromagnetic tomography (LORETA) method demonstrated a hypoactivity for the Go-condition in the parietal cortex of the right hemisphere and a hyperactivity in the NoGo-condition in the left parietal cortex in patients with WC compared with healthy controls. These results indicate an altered response control in patients with WC in widespread cortical brain areas and therefore support the hypothesis that the pathogenesis of WC is not restricted to a pure sensory-motor dysfunction.
Resumo:
Recent studies suggest that computerized cognitive training leads to improved performance in related but untrained tasks (i.e. transfer effects). However, most study designs prevent disentangling which of the task components are necessary for transfer. In the current study, we examined whether training on two variants of the adaptive dual n-back task would affect untrained task performance and the corresponding electrophysiological event-related potentials (ERPs). Forty three healthy young adults were trained for three weeks with a high or low interference training variant of the dual n-back task, or they were assigned to a passive control group. While n-back training with high interference led to partial improvements in the Attention Network Test (ANT), we did not find transfer to measures of working memory and fluid intelligence. ERP analysis in the n-back task and the ANT indicated overlapping processes in the P3 time range. Moreover, in the ANT, we detected increased parietal activity for the interference training group alone. In contrast, we did not find electrophysiological differences between the low interference training and the control group. These findings suggest that training on an interference control task leads to higher electrophysiological activity in the parietal cortex, which may be related to improvements in processing speed, attentional control, or both.
Resumo:
When bivalent stimuli (i.e., stimuli with relevant features for two different tasks) occur occasionally among univalent stimuli, performance is slowed on subsequent univalent stimuli even if they have no overlapping stimulus features. This finding has been labeled the bivalency effect. It indexes an adjustment of cognitive control, but the underlying mechanism is not well understood yet. The purpose of the present study was to shed light on this question, using event-related potentials. We used a paradigm requiring predictable alternations between three tasks, with bivalent stimuli occasionally occurring on one task. The results revealed that the bivalency effect elicited a sustained parietal positivity and a frontal negativity, a neural signature that is typical for control processes implemented to resolve interference. We suggest that the bivalency effect reflects interference, which may be caused by episodic context binding.
Resumo:
Perceptual integration of sensory input from our two nostrils has received little attention in comparison to lateralized inputs for vision and hearing. Here, we investigated whether a binary odor mixture of eugenol and l-carvone (smells of cloves and caraway) would be perceived differently if presented as a mixture in one nostril (physical mixture), vs. the same two odorants in separate nostrils (dichorhinic mixture). In parallel, we investigated whether the different types of presentation resulted in differences in olfactory event-related potentials (OERP). Psychophysical ratings showed that the dichorhinic mixtures were perceived as more intense than the physical mixtures. A tendency for shift in perceived quality was also observed. In line with these perceptual changes, the OERP showed a shift in latencies and amplitudes for early (more "sensory") peaks P1 and N1 whereas no significant differences were observed for the later (more "cognitive") peak P2. The results altogether suggest that the peripheral level is a site of interaction between odorants. Both psychophysical ratings and, for the first time, electrophysiological measurements converge on this conclusion.
Resumo:
Cognitive event-related potentials (ERPs) are widely employed in the study of dementive disorders. The morphology of averaged response is known to be under the influence of neurodegenerative processes and exploited for diagnostic purposes. This work is built over the idea that there is additional information in the dynamics of single-trial responses. We introduce a novel way to detect mild cognitive impairment (MCI) from the recordings of auditory ERP responses. Using single trial responses from a cohort of 25 amnestic MCI patients and a group of age-matched controls, we suggest a descriptor capable of encapsulating single-trial (ST) response dynamics for the benefit of early diagnosis. A customized vector quantization (VQ) scheme is first employed to summarize the overall set of ST-responses by means of a small-sized codebook of brain waves that is semantically organized. Each ST-response is then treated as a trajectory that can be encoded as a sequence of code vectors. A subject's set of responses is consequently represented as a histogram of activated code vectors. Discriminating MCI patients from healthy controls is based on the deduced response profiles and carried out by means of a standard machine learning procedure. The novel response representation was found to improve significantly MCI detection with respect to the standard alternative representation obtained via ensemble averaging (13% in terms of sensitivity and 6% in terms of specificity). Hence, the role of cognitive ERPs as biomarker for MCI can be enhanced by adopting the delicate description of our VQ scheme.
Resumo:
BACKGROUND: Virtual reality testing of everyday activities is a novel type of computerized assessment that measures cognitive, executive, and motor performance as a screening tool for early dementia. This study used a virtual reality day-out task (VR-DOT) environment to evaluate its predictive value in patients with mild cognitive impairment (MCI). METHODS: One hundred thirty-four patients with MCI were selected and compared with 75 healthy control subjects. Participants received an initial assessment that included VR-DOT, a neuropsychological evaluation, magnetic resonance imaging (MRI) scan, and event-related potentials (ERPs). After 12 months, participants were assessed again with MRI, ERP, VR-DOT, and neuropsychological tests. RESULTS: At the end of the study, we differentiated two subgroups of patients with MCI according to their clinical evolution from baseline to follow-up: 56 MCI progressors and 78 MCI nonprogressors. VR-DOT performance profiles correlated strongly with existing predictive biomarkers, especially the ERP and MRI biomarkers of cortical thickness. CONCLUSIONS: Compared with ERP, MRI, or neuropsychological tests alone, the VR-DOT could provide additional predictive information in a low-cost, computerized, and noninvasive way.
Resumo:
Performing a prospective memory task repeatedly changes the nature of the task from episodic to habitual. The goal of the present study was to investigate the neural basis of this transition. In two experiments, we contrasted event-related potentials (ERPs) evoked by correct responses to prospective memory targets in the first, more episodic part of the experiment with those of the second, more habitual part of the experiment. Specifically, we tested whether the early, middle, or late ERP-components, which are thought to reflect cue detection, retrieval of the intention, and post-retrieval processes, respectively, would be changed by routinely performing the prospective memory task. The results showed a differential ERP effect in the middle time window (450 - 650 ms post-stimulus). Source localization using low resolution brain electromagnetic tomography analysis (LORETA) suggests that the transition was accompanied by an increase of activation in the posterior parietal and occipital cortex. These findings indicate that habitual prospective memory involves retrieval processes guided more strongly by parietal brain structures. In brief, the study demonstrates that episodic and habitual prospective memory tasks recruit different brain areas.
Resumo:
With the progressing course of Alzheimer's disease (AD), deficits in declarative memory increasingly restrict the patients' daily activities. Besides the more apparent episodic (biographical) memory impairments, the semantic (factual) memory is also affected by this neurodegenerative disorder. The episodic pathology is well explored; instead the underlying neurophysiological mechanisms of the semantic deficits remain unclear. For a profound understanding of semantic memory processes in general and in AD patients, the present study compares AD patients with healthy controls and Semantic Dementia (SD) patients, a dementia subgroup that shows isolated semantic memory impairments. We investigate the semantic memory retrieval during the recording of an electroencephalogram, while subjects perform a semantic priming task. Precisely, the task demands lexical (word/nonword) decisions on sequentially presented word pairs, consisting of semantically related or unrelated prime-target combinations. Our analysis focuses on group-dependent differences in the amplitude and topography of the event related potentials (ERP) evoked by related vs. unrelated target words. AD patients are expected to differ from healthy controls in semantic retrieval functions. The semantic storage system itself, however, is thought to remain preserved in AD, while SD patients presumably suffer from the actual loss of semantic representations.
Resumo:
Many psychotherapy researchers agree that emotional change is critical to therapeutic progress. In emotion-focused and Gestalt therapy, one technique to foster emotional change is the empty chair dialogue. Psychotherapy research has yielded ample evidence that this technique helps to alleviate longstanding interpersonal grievances (‘unfinished business’) and facilitates emotional change. Until now, little is known about the neurophysiological correlates of such emotional change. The present study thus aims at adding a further level of analysis to psychotherapy research, and may enrich knowledge about mechanisms of change. Neurophysiological correlates of emotional change were investigated using multi-channel electroencephalography. Individuals experiencing ‘unfinished business’ were guided by experienced therapists to participate in an empty chair dialogue. Event-related brain potentials were recorded before and after the intervention while participants were viewing pictures of the person central to their interpersonal grievance as well as pictures of control persons. Event related potentials are compared regarding topography and overall signal strength. Preliminary results will be discussed regarding neurophysiological mechanisms of action potentially occurring during emotional change.
Resumo:
OBJECTIVES Objective evaluation of the impact of minimized extracorporeal circulation (MECC) on perioperative cognitive brain function in coronary artery bypass grafting (CABG) by electroencephalogram P300 wave event-related potentials and number connection test (NCT) as metrics of cognitive function. METHODS Cognitive brain function was assessed in 31 patients in 2013 with a mean age of 65 years [standard deviation (SD) 10] undergoing CABG by the use of MECC with P300 auditory evoked potentials (peak latencies in milliseconds) directly prior to intervention, 7 days after and 3 months later. Number connection test, serving as method of control, was performed simultaneously in all patients. RESULTS Seven days following CABG, cognitive P300 evoked potentials were comparable with preoperative baseline values [vertex (Cz) 376 (SD 11) ms vs 378 (18) ms, P = 0.39; frontal (Fz) 377 (11) vs 379 (21) ms, P = 0.53]. Cognitive brain function at 3 months was compared with baseline values [(Cz) 376 (11) ms vs 371 (14 ms) P = 0.09; (Fz) 377 (11) ms vs 371 (15) ms, P = 0.04]. Between the first postoperative measurement and 3 months later, significant improvement was observed [(Cz) 378 (18) ms vs 371 (14) ms, P = 0.03; (Fz) 379 (21) vs 371 (15) ms, P = 0.02]. Similar clearly corresponding patterns could be obtained via the number connection test. Results could be confirmed in repeated measures analysis of variance for Cz (P = 0.05) and (Fz) results (P = 0.04). CONCLUSIONS MECC does not adversely affect cognitive brain function after CABG. Additionally, these patients experience a substantial significant cognitive improvement after 3 months, evidentiary proving that the concept of MECC ensures safety and outcome in terms of brain function.
Resumo:
Prospective memory (ProM) is the ability to remember and perform an intention in the future. If a prospective memory task is to be performed only once, it is episodic. If it is repeated, then it becomes habitual. Thus, with repetition, a task changes from episodic to habitual. The goal of this study was to investigate the transition from episodic to habitual prospective memory with event-related potentials (ERP). The ProM task was to respond to a target word which was embedded in an ongoing lexical decision task. 40 ProM trials were administered in each of two sessions that were separated by a week. The results revealed a behavioural consolidation effect with increased ProM performance after one week. The ERP-analyses showed that when the task became more habitual a difference occurred in a time-window between 450-650 ms post-stimulus in an ERP-component. In addition, a covariance analysis revealed that this transition is continued in the second session. These results demonstrate that the transition from episodic to habitual prospective memory is long-lasting and continuous.
Resumo:
Prospektives Gedächtnis bezeichnet die Fähigkeit eine Absicht zu formulieren, diese zu behalten und sich wie geplant bei einer angemessenen Gelegenheit daran zu erinnern. Prospektive Gedächtnisaufgaben unterscheiden sich darin, ob sie nur einmal ausgeführt werden (z.B. einen Brief bei der Post einzuwerfen; episodische Aufgabe) oder ob sie immer wieder ausgeführt werden (jeweils nach dem Frühstück ein Medikament einnehmen; habituelle Aufgabe). Während im Alltag episodische Aufgaben häufig vorkommen, werden in Laborstudien oft mehrere Abrufhinweise verwendet (z.B. immer wenn ein bestimmtes Wort vorkommt, eine bestimmte Taste drücken). In diesem Beitrag thematisiere ich Messmethoden zur Erfassung von episodischem und habituellem prospektiven Gedächtnis, präsentiere Ergebnisse aus der eigenen Forschung mit EDA („electrodermal activity“) und ERP („event-related potentials“) und diskutiere ihre Relevanz zum Verständnis der neurokognitiven Mechanismen und der Messung individueller Unterschiede.
Resumo:
OBJECTIVES The objectives of the present study were to investigate temporal/spectral sound-feature processing in preschool children (4 to 7 years old) with peripheral hearing loss compared with age-matched controls. The results verified the presence of statistical learning, which was diminished in children with hearing impairments (HIs), and elucidated possible perceptual mediators of speech production. DESIGN Perception and production of the syllables /ba/, /da/, /ta/, and /na/ were recorded in 13 children with normal hearing and 13 children with HI. Perception was assessed physiologically through event-related potentials (ERPs) recorded by EEG in a multifeature mismatch negativity paradigm and behaviorally through a discrimination task. Temporal and spectral features of the ERPs during speech perception were analyzed, and speech production was quantitatively evaluated using speech motor maximum performance tasks. RESULTS Proximal to stimulus onset, children with HI displayed a difference in map topography, indicating diminished statistical learning. In later ERP components, children with HI exhibited reduced amplitudes in the N2 and early parts of the late disciminative negativity components specifically, which are associated with temporal and spectral control mechanisms. Abnormalities of speech perception were only subtly reflected in speech production, as the lone difference found in speech production studies was a mild delay in regulating speech intensity. CONCLUSIONS In addition to previously reported deficits of sound-feature discriminations, the present study results reflect diminished statistical learning in children with HI, which plays an early and important, but so far neglected, role in phonological processing. Furthermore, the lack of corresponding behavioral abnormalities in speech production implies that impaired perceptual capacities do not necessarily translate into productive deficits.
Resumo:
Gebiet: Chirurgie Abstract: Minimized Extracorporeal Circulation does not impair cognitive brain function after coronary artery bypass grafting – – Objectives – Objective evaluation of the impact of minimized extracorporeal circulation (MECC) on perioperative cognitive brain function in coronary bypass grafting (CABG) by Electroencephalogram (EEG) P 300 wave event related potentials (ERP) and number connection test ( NCT) as metrics of cognitive function. – – Methods – Cognitive brain function was assessed in 31 patients with a mean age of 65y (Standard Deviation/SD 10) undergoing coronary artery bypass grafting (CABG) by the use of MECC with P300 auditory evoked potentials (peak latencies in milliseconds [ms]) directly prior to intervention, 7 days after and 3 month later. Number connection test (NCT), serving as method of control, was performed simultaneously in all patients. – – Results – Seven days following CABG, cognitive P300 evoked potentials were comparable to preoperative baseline values (vertex [Cz] 376 (SD 11) ms vs. 378 (18) ms, p=0.39, frontal [Fz] 377 (11) vs. 379 (21) ms, p=0.53). Cognitive brain function showed at 3 months compared to baseline values ([Cz] 376 (11) ms vs. 371 (14 ms) p=0.09, [Fz] 377 (11) ms vs. 371 (15) ms, p=0.04. Between the first postoperative measurement and 3 months later, significant improvement was observed ([Cz] 378 (18) ms vs. 371 (14) ms, p=0.03, [Fz] 379 (21) vs. 371 (15) ms, p=0.02). Similar clearly corresponding patterns could be obtained via number connection test. Results could be confirmed in repeated measures analysis of variance for Cz (p = 0.05) and (Fz) results (p = 0.04). – – Conclusions
Resumo:
A prática do ioga tem se tornado cada vez mais popular, não apenas pelos benefícios físicos, mas principalmente pelo bem-estar psicológico trazido pela sua prática. Um dos componentes do ioga é o Prãnãyama, ou controle da respiração. A atenção e a respiração são dois mecanismos fisiológicos e involuntários requeridos para a execução do Prãnãyama. O principal objetivo desse estudo foi verificar se variáveis contínuas do EEG (potência de diferentes faixas que o compõem) seriam moduladas pelo controle respiratório, comparando-se separadamente as duas fases do ciclo respiratório (inspiração e expiração), na situação de respiração espontânea e controlada. Fizeram parte do estudo 19 sujeitos (7 homens/12 mulheres, idade média de 36,89 e DP = ± 14,46) que foram convidados a participar da pesquisa nas dependências da Faculdade de Saúde da Universidade Metodista de São Paulo. Para o registro do eletroencefalograma foi utilizado um sistema de posicionamento de cinco eletrodos Ag AgCl (FPz, Fz, Cz, Pz e Oz) fixados a uma touca de posicionamento rápido (Quick-Cap, Neuromedical Supplies®), em sistema 10-20. Foram obtidos valores de máxima amplitude de potência (espectro de potência no domínio da frequência) nas frequências teta, alfa e beta e delta e calculada a razão teta/beta nas diferentes fases do ciclo respiratório (inspiração e expiração), separadamente, nas condições de respiração espontânea e de controle respiratório. Para o registro do ciclo respiratório, foi utilizada uma cinta de esforço respiratório M01 (Pletismógrafo). Os resultados mostram diferenças significativas entre as condições de respiração espontânea e de controle com valores das médias da razão teta/beta menores na respiração controlada do que na respiração espontânea e valores de média da potência alfa sempre maiores no controle respiratório. Diferenças significativas foram encontradas na comparação entre inspiração e expiração da respiração controlada com diminuição dos valores das médias da razão teta/beta na inspiração e aumento nos valores das médias da potência alfa, sobretudo na expiração. Os achados deste estudo trazem evidências de que o controle respiratório modula variáveis eletrofisiológicas relativas à atenção refletindo um estado de alerta, porém mais relaxado do que na situação de respiração espontânea.