960 resultados para Euler, Teorema de


Relevância:

20.00% 20.00%

Publicador:

Resumo:

La seguente tesi affronta la dimostrazione del teorema dei quattro colori. Dopo un introduzione dei concetti cardine utili alla dimostrazione, quali i concetti ed i risultati principali della teoria dei grafi e della loro colorazione, viene affrontata a livello prima storico e poi tecnico l'evoluzione della dimostrazione del teorema, che rimase congettura per 124 anni.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il teorema della mappa di Riemann è un risultato fondamentale dell'analisi complessa che afferma l'esistenza di un biolomorfismo tra un qualsiasi dominio semplicemente connesso incluso strettamente nel piano ed il disco unità. Si tratta di un teorema di grande importanza e generalità, dato che non si fa alcuna ipotesi sul bordo del dominio considerato. Inoltre ha applicazioni in diverse aree della matematica, ad esempio nella topologia: può infatti essere usato per dimostrare che due domini semplicemente connessi del piano sono tra loro omeomorfi. Presentiamo in questa tesi due diverse dimostrazioni del teorema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La tesi tratta dei teoremi ergodici più importanti scoperti dalla fine dell'800 ad oggi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

teorema di estensione di Carathéodory

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Superfici di Riemann compatte, divisori, Teorema di Riemann Roch, immersioni nello spazio proiettivo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studio del teorema del viriale e relative applicazioni astrofisiche. In particolare si è studiato un sistema non collisionale formato da un numero grande di particelle. Nelle applicazioni astrofisiche si è considerato come sistema una galassia ellittica.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il punto centrale della tesi è stato dimostrare il Teorema di Koebe per le funzioni armoniche. È stato necessario partire da alcuni risultati di integrazione in Rn per ricavare identità e formule di rappresentazione per funzioni di classe C2, introdurre le funzioni armoniche e farne quindi una analisi accurata. Tali funzioni sono state caratterizzate tramite le formule di media e messe in relazione con le funzioni olomorfe, per le quali vale una formula simile di rappresentazione.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nel lavoro si dimostrano il Teorema della Divergenza e il Teorema di Stokes e le sue generalizzazioni a una curva chiusa di ordine k e a una varietà M, n-dimensionale, orientata con bordo. Successivamente si espongono due applicazioni alla fisica: l'elettromagnetismo e la formula del rotore. Nel primo caso si mostra come applicando il Teorema alle leggi di Biot-Savarat e di Faraday si ottengono le equazioni di Maxwell; nel secondo invece si osserva come il rotore rappresenti la densità superficiale di circuitazione.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dopo aver introdotto alcune nozioni della teoria della probabilità, ho esposto il teorema di Chebyshev ed alcuni teoremi ad esso collegati. Ho infine analizzato un'applicazione legata alle strategie d'investimento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

L’obiettivo di questa tesi è quello di presentare, in maniera elementare ma esaustiva, una delle teorie più interessanti nell’ambito dell’analisi matematica: le equazioni differenziali, equazioni che legano una funzione (vista come incognita) alle sue derivate. Nel presentare la teoria delle equazioni differenziali, l’esposizione viene suddivisa in tre capitoli. Il primo ha il fine di presentare la teoria, introducendo le definizioni e i principali risultati, con particolare attenzione al problema di Cauchy, mentre nel secondo l’attenzione si focalizza su come le soluzioni di un sistema differenziale dipendano dai dati iniziali. Nel terzo capitolo la teoria viene generalizzata attraverso il Teorema di Frobenius. Infatti, così come la soluzione di un’equazione differenziale ordinaria permette di ricostruire una curva passante per un dato punto a partire dal suo campo di tangenti, analogamente il Teorema di Frobenius permette di ricostruire una sottovarietà liscia a partire da un sistema di spazi vettoriali tangenti.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questa tesi si vede una dimostrazione elementare del teorema dei numeri primi. Dopo aver definito le funzioni aritmetiche di Tchebychev theta e psi, si utilizzano le loro proprietà per studiare il comportamento asintotico della funzione di Mertens e infine di pi(x). Inoltre si mostrano alcuni legami tra la zeta di Riemann e la teoria dei numeri e cenni ad altre dimostrazioni del teorema dei numeri primi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nella tesi vengono introdotte le varietà differenziabili per poter trattare un problema di immergibilità di varietà differenziabili. Viene data una dimostrazione di un teorema di Whitney nel caso di varietà differenziabili compatte. Il teorema stabilisce che per una varietà compatta di dimensione n esiste un embedding nello spazio euclideo di dimensione 2n+1. Whitney stesso ha migliorato questo risultato, dimostrando che una varietà differenziabile può essere immersa tramite un embedding nello spazio euclideo di dimensione 2n. Nella tesi vengono dati alcuni esempi di questo miglioramento del teorema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Il teorema del viriale consiste in una relazione tra energia cinetica e energia potenziale totali di un sistema all'equilibrio. Il concetto di Viriale (dal latino vires, plurale di vis, 'forza') è stato introdotto dal fisico e matematico tedesco Rudolf Julius Emanuel Clausius (1822-1888) per indicare la quantità N
Fi •xi i=1 che rappresenta la somma, fatta su tutte le N particelle di un sistema, dei prodotti scalari del vettore forza totale agente su ciascuna particella per il vettore posizione della particella stessa, rispetto ad un riferimento inerziale scelto. Tale quantità altro non è che un'energia potenziale. Dire che un sistema di particelle è virializzato equivale a dire che esso è stazionario, cioè all'equilibrio. In questo elaborato sono di nostro interesse sistemi astrofisici gravitazionali, in cui cioè l'energia potenziale sia dovuta solo a campi gravitazionali. Distingueremo innanzitutto sistemi collisionali e non collisionali, introducendo i tempi scala di attraversamento e di rilassamento. Dopo una trattazione teorica del teorema, nell'approssimazione di continuità - per cui sostuiremo alle sommatorie gli integrali - e di non collisionalità, an- dremo a studiarne l'importanza in alcuni sistemi astrofisici: applicazione agli ammassi stellari, alle galassie e agli ammassi di galassie, stima della quantità di materia oscura nei sistemi, instabilità di Jeans in nubi molecolari, rotazione delle galassie ellittiche. Per ragioni di spazio non saranno affrontati altri casi, di cui ne citiamo alcuni: collasso delle stelle, stima della massa dei buchi neri al centro delle galassie, 'mass-to-light ratio' di sistemi sferici. Parleremo in generale di “particelle” costituenti i sistemi per intendere stelle, galassie, particelle di gas a seconda del sistema in esame. Trascureremo in ogni caso le influenze gravitazionali di distribuzioni di densità esterne al sistema.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lo scopo di questa tesi è analizzare il teorema del punto fisso di Brouwer, e lo faremo da più punti di vista, generalizzandolo e dando una piccola illustrazione di una sua possibile applicazione nella teoria dei giochi. Il teorema del punto fisso è uno dei teoremi prìncipi della topologia algebrica. Nella versione classica esso afferma che qualsiasi funzione continua che porta la palla unitaria di \R^{n} in se stessa possiede un punto fisso.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In questo elaborato si presenta il teorema del viriale, introdotto per la prima volta da R. J. E. Clausius nel 1870. É una relazione fra energia cinetica e poteziale totali di un sistema che, se soddisfatta, implica che questo sia in equilibrio. Sono equivalenti le affermazioni: "sistema virializzato" e "sistema in equilibrio". Sebbene in ordine cronologico la prima formulazione del teorema sia stata quella in forma scalare, ricaveremo, per maggiore generalità, la forma tensoriale, dalla quale estrarremo quella scalare come caso particolare. Sono di nostro interesse i sistemi astrofisici dinamici autogravitanti costituiti da N particelle (intese come stelle, gas etc.), perciò la trattazione teorica è dedotta per tali configurazioni. In seguito ci concentreremo su alcune applicazioni astrofisiche. In primo luogo analizzeremo sistemi autogravitanti, per cui l'unica energia potenziale in gioco è quella dovuta a campi gravitazionali. Sarà quindi ricavato il limite di Jeans per l'instabilità gravitazionale, con conseguente descrizione del processo di formazione stellare, la stima della quantità di materia oscura in questi sistemi e il motivo dello schiacciamento delle galassie ellittiche. Successivamente introdurremo nell'energia potenziale un termine dovuto al campo magnetico, seguendo il lavoro di Fermi e Chandrasekhar, andando a vedere come si modifica il teorema e quali sono le implicazioni nella stabilità delle strutture stellari. Per motivi di spazio, queste trattazioni saranno presentate in termini generali e con approssimazioni, non potendo approfondire casi più specifici.