939 resultados para Erosão - Previsão


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Energia na Agricultura) - FCA

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O conhecimento prévio do valor da carga é de extrema importância para o planejamento e operação dos sistemas de energia elétrica. Este trabalho apresenta os resultados de um estudo investigativo da aplicação de Redes Neurais Artificiais do tipo Perceptron Multicamadas com treinamento baseado na Teoria da Informação para o problema de Previsão de Carga a curto prazo. A aprendizagem baseada na Teoria da Informação se concentra na utilização da quantidade de informação (Entropia) para treinamento de uma rede neural artificial. Dois modelos previsores são apresentados sendo que os mesmos foram desenvolvidos a partir de dados reais fornecidos por uma concessionária de energia. Para comparação e verificação da eficiência dos modelos propostos um terceiro modelo foi também desenvolvido utilizando uma rede neural com treinamento baseado no critério clássico do erro médio quadrático. Os resultados alcançados mostraram a eficiência dos sistemas propostos, que obtiveram melhores resultados de previsão quando comparados ao sistema de previsão baseado na rede treinada pelo critério do MSE e aos sistemas previsores já apresentados na literatura.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Esta pesquisa dedicou-se a investigar a resolução de problemas aditivos nas séries iniciais e, em especial, se a concepção dos professores sobre a complexidade de um problema aditivo é determinante no rendimento dos alunos. Para alcançar esse objetivo foi desenvolvida uma pesquisa exploratória sobre as estratégias de resolução de problemas com alunos dos municípios de Belém, Capanema e Bragança, em 08 turmas de 4ª série, sendo sete delas de escolas públicas e uma de iniciativa privada, totalizando 205 alunos participantes da pesquisa. Com base nos estudos de Huete e Bravo (2006) aplicou-se, através de um questionário, 17 problemas aditivos aos alunos e, de acordo com seus rendimentos, os problemas foram divididos em problemas de baixa, média ou alta complexidade. Investigou-se também a avaliação dos professores quanto aos problemas aplicados aos alunos. Os resultados indicam que quanto maior é a complexidade de um problema para os alunos, mais dificuldade os professores têm de prever essa complexidade, especialmente porque algumas variáveis se fazem presentes na constituição de um problema complexo. Concluiu-se que é necessário dar maior atenção à formação docente, uma vez que o sucesso nas previsões de um problema aditivo está relacionado aos professores com maior formação acadêmica e aos professores com formação específica em matemática, além do que se faz urgente que se realize atividades voltadas à linguagem matemática nas salas de aulas, pois se percebeu pelos resultados dos alunos, uma real dificuldade nesse segmento.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Ciência do Solo) - FCAV

Relevância:

20.00% 20.00%

Publicador:

Resumo:

No contexto da previsão de séries temporais, é grande o interesse em estudos de métodos de previsão de séries temporais que consigam identificar as estruturas e padrões existentes nos dados históricos, possibilitando gerar os próximos padrões da série. A proposta defendida nesta tese é a de desenvolvimento de um framework que utilize ao máximo as potencialidades das técnicas de previsão (redes neurais artificiais) com as técnicas de otimização (algoritmos genéticos) em um sistema híbrido intercomunicativo que aproveite bem as vantagens de cada uma dessas técnicas para a geração de cenários futuros que possam mostrar, além das previsões normais com base nos valores históricos, percursos alternativos das curvas das séries temporais analisadas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Diversas atividades de planejamento e operação em sistemas de energia elétrica dependem do conhecimento antecipado e preciso da demanda de carga elétrica. Por este motivo, concessionárias de geração e distribuição de energia elétrica cada vez mais fazem uso de tecnologias de previsão de carga. Essas previsões podem ter um horizonte de curtíssimo, curto, médio ou longo prazo. Inúmeros métodos estatísticos vêm sendo utilizados para o problema de previsão. Todos estes métodos trabalham bem em condições normais, entretanto deixam a desejar em situações onde ocorrem mudanças inesperadas nos parâmetros do ambiente. Atualmente, técnicas baseadas em Inteligência Computacional vêm sendo apresentadas na literatura com resultados satisfatórios para o problema de previsão de carga. Considerando então a importância da previsão da carga elétrica para os sistemas de energia elétrica, neste trabalho, uma nova abordagem para o problema de previsão de carga via redes neurais Auto-Associativas e algoritmos genéticos é avaliada. Três modelos de previsão baseados em Inteligência Computacional são também apresentados tendo seus desempenhos avaliados e comparados com o sistema proposto. Com os resultados alcançados, pôde-se verificar que o modelo proposto se mostrou satisfatório para o problema de previsão, reforçando assim a aplicabilidade de metodologias de inteligência computacional para o problema de previsão de cargas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)