979 resultados para Equatorial orbits


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Optical surveys for space debris in high-altitude orbits have been conducted since more than ten years. Originally these efforts concentrated mainly on the geostationary ring (GEO). Corresponding observation strategies, processing techniques and cataloguing approaches have been developed and successfully applied. The ESA GEO surveys, e.g., resulted in the detection of a significant population of small-size debris and later in the discovery of high area-to-mass ratio objects in GEO-like orbits. The observation scenarios were successively adapted to survey the geostationary transfer orbit (GTO) region; and recently surveys to search for debris in the medium Earth orbit (MEO) region of the global navigation satellite constellations were successfully conducted. Comparably less experience (both, in terms of practical observation and strategy definition) is available for eccentric orbits that (at least partly) are in the MEO region, in particular for the Molniya-type orbits. Several breakup events and deliberate fragmentations are known to have taken place in such orbits. Different survey and follow-up strategies for searching space debris objects in highly-eccentric MEO orbits, and to acquire orbits which are sufficiently accurate to catalogue such objects and to maintain their orbits over longer time spans were developed. Simulations were performed to compare the performance of different survey and cataloguing strategies. Eventually, optical observations were conducted in the framework of an ESA study using ESA’s Space Debris Telescope (ESASDT) the 1-m Zeiss telescope located at the Optical Ground Station (OGS) at the Teide Observatory at Tenerife, Spain. A first series of surveys of Molnjya-type orbits was performed between January and April 2013. During these four months survey observations were performed during nine nights. A basic survey consisted of observing a single geocentric field for 10 minutes. If a faint object was found, follow-up observations were performed during the same night to ensure a save rediscovery of the object during the next nights. Additional follow-up observations to maintain the orbits of these newly discovered faint objects were also acquired with AIUB ́s 1m ZIMLAT telescope in Zimmerwald, Switzerland. Eventually 195 basic surveys were performed during these nine nights corresponding to about 32.5 hours of observations. In total 24 uncorrelated faint objects were discovered and all known catalogue objects in the survey fields were detected. On average one uncorrelated object was found every 80 minutes. Some of these objects show a considerable brightness variation and have a high area-to-mass ratio as determined in the orbit estimation process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigates processes of sediment generation in equatorial central Africa. An original, complete and integrated mineralogical-geochemical database on silt-sized sediments derived from different parent rocks (basalt, granite, gneiss, metapsammite, sandstone) along the East African Rift from 5°S in Tanzania to 5°N in Sudan is presented and used to assess the incidence of diverse factors controlling sediment composition (source-rock lithology, geomorphology, hydraulic sorting, grain size, recycling), with particular emphasis on chemical weathering.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complex effects of light, nutrients and temperature lead to a variable carbon to chlorophyll (C:Chl) ratio in phytoplankton cells. Using field data collected in the Equatorial Pacific, we derived a new dynamic model with a non-steady C:Chl ratio as a function of irradiance, nitrate, iron, and temperature. The dynamic model is implemented into a basin-scale ocean circulation-biogeochemistry model and tested in the Equatorial Pacific Ocean. The model reproduces well the general features of phytoplankton dynamics in this region. For instance, the simulated deep chlorophyll maximum (DCM) is much deeper in the western warm pool (similar to 100 m) than in the Eastern Equatorial Pacific (similar to 50 m). The model also shows the ability to reproduce chlorophyll, including not only the zonal, meridional and vertical variations, but also the interannual variability. This modeling study demonstrates that combination of nitrate and iron regulates the spatial and temporal variations in the phytoplankton C:Chl ratio in the Equatorial Pacific. Sensitivity simulations suggest that nitrate is mainly responsible for the high C:Chl ratio in the western warm pool while iron is responsible for the frontal features in the C:Chl ratio between the warm pool and the upwelling region. In addition, iron plays a dominant role in regulating the spatial and temporal variations of the C:Chl ratio in the Central and Eastern Equatorial Pacific. While temperature has a relatively small effect on the C:Chl ratio, light is primarily responsible for the vertical decrease of phytoplankton C:Chl ratio in the euphotic zone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a three-dimensional physical-biogeochemical model, we have investigated the modeled responses of diatom productivity and biogenic silica export to iron enrichment in the equatorial Pacific, and compared the model simulation with in situ (IronEx II) iron fertilization results. In the eastern equatorial Pacific, an area of 540,000 km(2) was enhanced with iron by changing the photosynthetic efficiency and silicate and nitrogen uptake kinetics of phytoplankton in the model for a period of 20 days. The vertically integrated Chl a and primary production increased by about threefold 5 days after the start of the experiment, similar to that observed in the IronEx II experiment. Diatoms contribute to the initial increase of the total phytoplankton biomass, but decrease sharply after 10 days because of mesozooplankton grazing. The modeled surface nutrients (silicate and nitrate) and TCO(2) anomaly fields, obtained from the difference between the "iron addition'' and "ambient'' (without iron) concentrations, also agreed well with the IronEx II observations. The enriched patch is tracked with an inert tracer similar to the SF6 used in the IronEx II. The modeled depth-time distribution of sinking biogenic silica (BSi) indicates that it would take more than 30 days after iron injection to detect any significant BSi export out of the euphotic zone. Sensitivity studies were performed to establish the importance of fertilized patch size, duration of fertilization, and the role of mesozooplankton grazing. A larger size of the iron patch tends to produce a broader extent and longer-lasting phytoplankton blooms. Longer duration prolongs phytoplankton growth, but higher zooplankton grazing pressure prevents significant phytoplankton biomass accumulation. With the same treatment of iron fertilization in the model, lowering mesozooplankton grazing rate generates much stronger diatom bloom, but it is terminated by Si(OH)(4) limitation after the initial rapid increase. Increasing mesozooplankton grazing rate, the diatom increase due to iron addition stays at minimum level, but small phytoplankton tend to increase. The numerical model experiments demonstrate the value of ecosystem modeling for evaluating the detailed interaction between biogeochemical cycle and iron fertilization in the equatorial Pacific.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The causes of the glacial cycle remain unknown, although the primary driver is changes in atmospheric CO(2), likely controlled by the biological pump and biogeochemical cycles. The two most important regions of the ocean for exchange of CO(2) with the atmosphere are the equatorial Pacific and the Southern Ocean ( SO), the former a net source and the latter a net sink under present conditions. The equatorial Pacific has been shown to be a Si(OH)(4)-limited ecosystem, a consequence of the low source Si(OH)(4) concentrations in upwelled water that has its origin in the SO. This teleconnection for nutrients between the two regions suggests an oscillatory relationship that may influence or control glacial cycles. Opal mass accumulation rate (MAR) data and delta(15)N measurements in equatorial cores are interpreted with predictions from a one- dimensional Si(OH)(4)-limited ecosystem model (CoSINE) for the equatorial Pacific. The results suggest that equatorial Pacific surface CO(2) processes are in opposite phase to that of the global atmosphere, providing a negative feedback to the glacial cycle. This negative feedback is implemented through the effect of the SO on the equatorial Si(OH)(4) supply. An alternative hypothesis, that the whole ocean becomes Si(OH)(4) poor during cooling periods, is suggested by low opal MAR in cores from both equatorial and Antarctic regions, perhaps as a result of low river input. terminations in this scenario would result from blooms of coccolithophorids triggered by low Si(OH)(4) concentrations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equatorial Pacific Ocean is the largest natural source of CO(2) to the atmosphere, and it significantly impacts the global carbon cycle. Much of the large flux of upwelled CO(2) to the atmosphere is due to incomplete use of the available nitrate (NO(3)) and low net productivity. This high-nutrient low-chlorophyll (HNLC) condition of the equatorial upwelling zone (EUZ) has been interpreted from modeling efforts to be due to low levels of silicate ( Si( OH) 4) that limit the new production of diatoms. These ideas were incorporated into an ecosystem model, CoSINE. This model predicted production by the larger phytoplankton and the picoplankton and effects on air-sea CO(2) fluxes in the Pacific Ocean. However, there were no size-fractionated rates available for verification. Here we report the first size-fractionated new and regenerated production rates (obtained with (15)N - NO(3) and (15)N - NH(4) incubations) for the EUZ with the objective of validating the conceptual basis and functioning of the CoSINE model. Specifically, the larger phytoplankton ( with cell diameters > 5 mu m) had greater rates of new production and higher f-ratios (i.e., the proportion of NO(3) to the sum of NO(3) and NH(4) uptake) than the picoplankton that had high rates of NH(4) uptake and low f-ratios. The way that the larger primary producers are regulated in the EUZ is discussed using a continuous chemostat approach. This combines control of Si(OH)(4) production by supply rate (bottom-up) and control of growth rate ( or dilution) by grazing ( top-down control).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The indirect solar radiation pressure caused by reflected or re-emitted radiation by the Earth’s surface is an important non-gravitational force perturbing the orbits of geodetic satellites (Rubincam and Weiss, 1986; Martin and Rubincam, 1996). In the case of LAGEOS this acceleration is of the order of 15% of the direct solar radiation pressure. Therefore, Earth radiation pressure has a non-negligible impact not only on LAGEOS orbits, but also on the SLR-derived terrestrial reference frame. We investigate the impact of the Earth radiation pressure on LAGEOS orbits and on the SLR-derived parameters. Earth radiation pressure has a remarkable impact on the semi-major axes of the LAGEOS satellites, causing a systematic reduction of 1.5 mm. The infrared Earth radiation causes a reduction of about 1.0 mm and the Earth’s reflectivity of 0.5 mm of the LAGEOS’ semi-major axes. The global scale defined by the SLR network is changed by 0.07 ppb, when applying Earth radiation pressure. The resulting station heights differ by 0.5-0.6 mm in the solution with and without Earth radiation pressure. However, when range biases are estimated, the height differences are absorbed by the range biases, and thus, the station heights are not shifted.