993 resultados para Enzymatic Activities
Resumo:
The effect of feed restriction and enzymatic supplementation on intestinal and pancreatic enzyme activities and weight gain was studied in broiler chickens. Quantitative feed restriction was applied to chickens from 7 to 14 d of age. An enzyme complex mainly consisting of protease and amylase was added to the chicken ration from hatching to the end of the experiment. Birds subjected to feed restriction whose diet was not supplemented showed an increase in sucrase, amylase, and lipase activities immediately after the restriction period. Amylase, lipase, and chymotrypsin activities were higher in chickens subjected to feed restriction and fed a supplemented diet than in those only subjected to feed restriction. Trypsin activity increased after feed restriction and after supplementation, but there was no interaction between these effects. Early feed restriction had no effect on enzyme activity in 42-d-old chickens. Chickens subjected to early restriction and fed the supplemented diet presented higher sucrase, maltase, and lipase activities than nonsupplemented ones (P < 0.05). There was no effect of early feed restriction or diet supplementation on weight gain to 42 d. Percentage weight gain from 14 to 42 d of age was equivalent in feed-restricted and ad libitum fed birds. Feed-restricted broilers fed a supplemented diet showed a higher percentage weight gain than nonsupplemented birds. We conclude that enzymatic supplementation potentiates the effect of feed restriction on digestive enzyme activity and on weight gain.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Enzymatic variability among venoms from different subspecies of Apis mellifera (Hymenoptera: Apidae)
Resumo:
The enzymatic variability was analyzed in venom extracts from bees reared in different colonies of the Africanized, A. m. ligustica and A. m. carnica subspecies. The implications of this variation focused on the biochemistry differentiation and immunogenicity of these venoms. The results showed the existence of a huge variability among the subspecies as well as among the colonies for three out of the six tested components - hyaluronidase, acid phosphatase and proteases - suggesting the utilization of these features as possible biochemical markers. Furthermore, although not statistically significant, it was found that the Africanized bee venom presented slightly higher levels of protein content and esterase activity, when compared to the other subspecies. If the esterase plays a role in the pain intensity caused by the sting, as suggested elsewhere, this might suggest a reason for a bigger algogenicity of this venom in relation to that of European bees. On the other hand, A. m. ligustica bees presented the highest levels of proteolytic and acid phosphatase activities, whose functions are not enlightened in Hymenoptera venoms. The A. m. carnica workers presented the highest hyaluronidase and the lowest acid phosphatase activity levels. The extremely variable results among colonies of the same subspecies and among subspecies, for the tested venom components, justify the absence of correlation between allergic reactions and tests with pooled venom.
Resumo:
Currently, there is worldwide interest in the technological use of agro-industrial residues as a renewable source of food and biofuels. Lignocellulosic materials (LCMs) are a rich source of cellulose and hemicellulose. Hemicellulose is rich in xylan, a polysaccharide used to develop technology for producing alcohol, xylose, xylitol and xylo-oligosaccharides (XOSs). The XOSs are unusual oligosaccharides whose main constituent is xylose linked by β 1-4 bonds. The XOS applications described in this paper highlight that they are considered soluble dietary fibers that have prebiotic activity, favoring the improvement of bowel functions and immune function and having antimicrobial and other health benefits. These effects open a new perspective on potential applications for animal production and human consumption. The raw materials that are rich in hemicellulose include sugar cane bagasse, corncobs, rice husks, olive pits, barley straw, tobacco stalk, cotton stalk, sunflower stalk and wheat straw. The XOS-yielding treatments that have been studied include acid hydrolysis, alkaline hydrolysis, auto-hydrolysis and enzymatic hydrolysis, but the breaking of bonds present in these compounds is relatively difficult and costly, thus limiting the production of XOS. To obviate this limitation, a thorough evaluation of the most convenient methods and the opportunities for innovation in this area is needed. Another challenge is the screening and taxonomy of microorganisms that produce the xylanolytic complex and enzymes and reaction mechanisms involved. Among the standing out microorganisms involved in lignocellulose degradation are Trichoderma harzianum, Cellulosimicrobium cellulans, Penicillium janczewskii, Penicillium echinulatu, Trichoderma reesei and Aspergillus awamori. The enzyme complex predominantly comprises endoxylanase and enzymes that remove hemicellulose side groups such as the acetyl group. The complex has low β-xylosidase activities because β-xylosidase stimulates the production of xylose instead of XOS; xylose, in turn, inhibits the enzymes that produce XOS. The enzymatic conversion of xylan in XOS is the preferred route for the food industries because of problems associated with chemical technologies (e.g., acid hydrolysis) due to the release of toxic and undesired products, such as furfural. The improvement of the bioprocess for XOS production and its benefits for several applications are discussed in this study. © 2012 Elsevier Ltd.
Resumo:
Although sugarcane consumption is very popular worldwide there are few studies regarding the postharvest storage of stalks that focus on controlling enzymatic browning. The objective of this study was to evaluate the quality of sugarcane stalks stored at 10±1°C in controlled atmosphere with various oxygen (O2) levels (1kPa, 5kPa, 10kPa, 15kPa, and 21kPa) and to verify the effect of this storage on the activities of polyphenoloxidase (PPO) and peroxidase (POD). At 1kPa and 5kPa O2, the stalks' respiratory rate, POD activity, and reducing sugar content were significantly less (P<0.05) than at higher O2 concentrations. In contrast, low O2 levels did not affect PPO activity or influence cane coloration. These results can be used to guide the choice of plastic films, making it possible to store sugarcane stalks in a controlled atmosphere. © 2013 Elsevier B.V.
Resumo:
Sulfated polysaccharides derived from seaweed have shown great potential for use in the development of new drugs. In this study, we observed that a low-molecular-weight sulfated polysaccharide from Caulerpa racemosa, termed CrSP, could interact with secretory phospholipase A2 (sPLA2) isolated from Crotalus durissus terrificus venom. When native sPLA2 (14 kDa) was incubated with CrSP, they formed a molecular complex (sPLA2:CrSP) with a molecular mass of 32 kDa, approximately. Size exclusion chromatography experiments suggested that CrSP formed a stable complex with sPLA2. We belived that sPLA2 and SPCr are involved an ionic interaction between negatively charged CrSP and the positively charged basic amino acid residues of sPLA2, because this interaction induced significant changes in sPLA2 enzymatic and pharmacological activities. CrSP caused a significant increase in sPLA2 enzymatic and bactericidal activity and increased its edematogenic effect. A pharmacological assay showed that the myotoxic activity of sPLA2:CrSP is unrelated to its enzymatic activity and that sPLA2:CrSP may have a practical application as a natural antibacterial agent for use in humans and commercially raised animals.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Scaffolds of chitosan and collagen can offer a biological niche for the growth of adipose derived stem cells (ADSC). The objective of this work was to characterize the physico-chemical properties of the scaffolds and the ADSC, as well as their interactions to direct influences of the scaffolds on the behavior of ADSC. The methodology included an enzymatic treatment of fat obtained by liposuction by collagenase, ASDC immunophenotyping, cell growth kinetics, biocompatibility studies of the scaffolds analyzed by the activity of alkaline phosphatase (AP), nitric oxide (NO) determination by the Griess-Saltzman reaction, and images of both optical and scanning electron microscopy of the matrices. The extent of the crosslinking of genipin and glutaraldehyde was evaluated by ninhydrin assays, solubility tests and degradation of the matrices. The results showed that the matrices are biocompatible, exhibit physical and chemical properties needed to house cells in vivo and are strong stimulators of signaling proteins (AP) and other molecules (NO) which are important in tissue healing. Therefore, the matrices provide a biological niche for ADSC adhesion, proliferation and cells activities.
Resumo:
Context: Sapindus saponaria L. (Sapindaceae) bark, root, and fruits are used as sedatives and to treat gastric ulcer and also demonstrate diuretic and expectorant effects. Objective: The anti-snake venom properties of callus of S. saponaria are investigated here for the first time. Materials and methods: In vitro cultivated callus of Sapindus saponaria were lyophilized, and the extracts were prepared with different solvents, before submitting to phytochemical studies and evaluation of the anti-ophidian activity. Crude extracts were fractionated by liquid-liquid partition and the fractions were monitored by thin layer chromatography (TLC). Subsequently, anti-ophidian activities were analyzed toward Bothrops jararacussu Lacerda (Viperidae), B. moojeni Hoge (Viperidae), B. alternates Dumeril (Viperidea) and Crotalus durissus terrificus Lineu (Viperidae) venoms and isolated myotoxins and phospholipase A(2) (PLA(2)). Results: Fractions A1, A2 and the extract in MeOH:H2O (9:1) significantly inhibited the toxic and pharmacological activities induced by snake venoms and toxins, when compared to other extracts and fractions. The lethal, clotting, phospholipase, edema-inducing, hemorrhagic and myotoxic activities were partially inhibited by the different extracts and fractions. TLC profiles of the crude extracts (B and C) and fractions (A1 and A2) showed beta-sitosterol and stigmasterol as their main compounds. Stigmasterol exhibited inhibitory effects on enzymatic and myotoxic activities of PLA(2). Discussion and conclusion: Sapindus saponaria extracts and fractions presented anti-ophidian activity and could be used as an adjuvant to serum therapy or for its supplementation, and in addition, as a rich source of potential inhibitors of enzymes involved in several pathophysiological human and animal diseases.
Resumo:
A hyaluronidase (CdtHya1) from Crotalus durissus terrificus snake venom (CdtV) was isolated and showed to exhibit a high activity on hyaluronan cleavage. However, surveys on this enzyme are still limited. This study aimed at its isolation, functional/structural characterization and the evaluation of its effect on the spreading of crotoxin and phospholipase A(2) (PLA(2)). The enzyme was purified through cation exchange, gel filtration and hydrophobic chromatography. After that, it was submitted to a reverse-phase fast protein liquid chromatography (RP-FPLC) and Edman degradation sequencing, which showed the first N-terminal 44 amino acid residues whose sequence evidenced identity with other snake venom hyaluronidases. CdtHya1 is a monomeric glycoprotein of 64.5 kDa estimated by SDS-PAGE under reducing conditions. It exhibited maximum activity in the presence of 0.2 M NaCl, at 37 degrees C, pH 5.5 and a specificity to hyaluronan higher than that to chondroitin-4-sulphate, chondroitin-6-sulphate or dermatan. Divalent cations (Ca2+ and Mg2+) and 1 M NaCl significantly reduced the enzyme activity. The specific activity of CdtHya1 was 5066 turbidity reducing units (TRU)/mg, against 145 TRU/mg for the soluble venom, representing a 34.9-fold purification. The pure enzyme increased the diffusion of crotoxin and PLA (2) through mice tissues. CdtHya1 (32 TRU/40 mu L) potentiated crotoxin action, as evidenced by mice death, and it decreased the oedema caused by subplantar injections of buffer, crotoxin or PLA(2), thus evidencing the relevance of hyaluronidase in the crotalic envenoming. This work yielded a highly active antiedematogenic hyaluronidase from CdtV, the first one isolated from rattlesnake venoms. (C) 2012 Elsevier Masson SAS. All rights reserved.
Resumo:
Aspergillus phoenicis is an interesting heat tolerant fungus that can synthesize enzymes with several applications in the food industry due to its great hydrolytic potential. In this work, the fungus produced high enzymatic levels when cultivated on inexpensive culture media consisting of flakes from different origins such as cassava flour, wheat fibre, crushed soybean, agro-industrial wastes, starch, glucose or maltose. Several enzymatic systems were produced from these carbon sources, but amylase was the most evident, followed by pectinase and xylanase. Traces of CMCases, avicelase, lipase, β-xylosidase, β-glucosidase and α-glucosidase activities were also detected. Amylases were produced on rye flakes, starch, oat flakes, corn flakes, cassava flour and wheat fibre. Significant amylolytic levels were produced in the culture medium with glucose or when this sugar was exhausted, suggesting an enzyme in the constitutive form. Cassava flour, rye, oats, barley and corn flakes were also used as substrates in the hydrolytic reactions, aiming to verify the liberation potential of reducing sugars. Corn flakes induced greater liberation of reducing sugars as compared to the others. Thin layer chromatography of the reaction end products showed that the hydrolysis of cassava flour liberated maltooligosaccharides, but cassava flour and corn, rye, oats and barley flakes were hydrolyzed to glucose. These results suggested the presence of glucoamylase and α-amylase as part of the enzymatic pool of A. phoencis.
Resumo:
Endonuclease III from Escherichia coli, yeast (yNtg1p and yNtg2p) and human and E.coli endonuclease VIII have a wide substrate specificity, and recognize oxidation products of both thymine and cytosine. DNA containing single dihydrouracil (DHU) and tandem DHU lesions were used as substrates for these repair enzymes. It was found that yNtg1p prefers DHU/G and exhibits much weaker enzymatic activity towards DNA containing a DHU/A pair. However, yNtg2p, E.coli and human endonuclease III and E.coli endonuclease VIII activities were much less sensitive to the base opposite the lesion. Although these enzymes efficiently recognize single DHU lesions, they have limited capacity for completely removing this damaged base when DHU is present on duplex DNA as a tandem pair. Both E.coli endonuclease III and yeast yNtg1p are able to remove only one DHU in DNA containing tandem lesions, leaving behind a single DHU at either the 3′- or 5′-terminus of the cleaved fragment. On the other hand, yeast yNtg2p can remove DHU remaining on the 5′-terminus of the 3′ cleaved fragment, but is unable to remove DHU remaining on the 3′-terminus of the cleaved 5′ fragment. In contrast, both human endonuclease III and E.coli endonuclease VIII can remove DHU remaining on the 3′-terminus of a cleaved 5′ fragment, but are unable to remove DHU remaining on the 5′-terminus of a cleaved 3′ fragment. Tandem lesions are known to be generated by ionizing radiation and agents that generate reactive oxygen species. The fact that these repair glycosylases have only a limited ability to remove the DHU remaining at the terminus suggests that participation of other repair enzymes is required for the complete removal of tandem lesions before repair synthesis can be efficiently performed by DNA polymerase.