860 resultados para Enhanced optical transmission


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Carbon-supported Pt-Au (Pt-Au/C) catalyst is prepared separately by impregnation, colloidal and micro-emulsion methods, and characterized by physical and electrochemical methods. Highest catalytic activity towards oxygen-reduction reaction (ORR) is exhibited by Pt-Au/C catalyst prepared by colloidal method. The optimum atomic ratio of Pt to Au in Pt-Au/C catalyst prepared by colloidal method is determined using linear-sweep and cyclic voltammetry in conjunction with cell-polarization studies. Among 3:1, 2:1 and 1:1 Pt-Au/C catalysts, (3:1) Pt-Au/C exhibits maximum electrochemical activity towards ORR. Powder X-ray diffraction pattern and transmission electron micrograph suggest Pt-Au alloy nanoparticles to be well dispersed onto the carbon-support. Energy dispersive X-ray analysis and inductively coupled plasma-optical emission spectroscopy data suggest that the atomic ratios of the alloying elements match well with the expected values. A polymer electrolyte fuel cell (PEFC) operating at 0 center dot 6 V with (3:1) Pt-Au/C cathode delivers a maximum power-density of 0 center dot 65 W/cm (2) in relation to 0 center dot 53 W/cm (2) delivered by the PEFC with pristine carbon-supported Pt cathode.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that the third order optical nonlinearity of 15-atom gold clusters is significantly enhanced when in contact with indium tin oxide (ITO) conducting film. Open and close aperture z-scan experiments together with non-degenerate pump-probe differential transmission experiments were done using 80 fs laser pulses centered at 395 nm and 790 nm on gold clusters encased inside cyclodextrin cavities. We show that two photon absorption coefficient is enhanced by an order of magnitude as compared to that when the clusters are on pristine glass plate. The enhancement for the nonlinear optical refraction coefficient is similar to 3 times. The photo-induced excited state absorption using pump-probe experiments at pump wavelength of 395 nm and probe at 790 nm also show an enhancement by an order of magnitude. These results attributed to the excited state energy transfer in the coupled gold cluster-ITO system are different from the enhancement seen so far in charge donor-acceptor complexes and nanoparticle-conjugate polymer composites.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper optical code-division multiple-access (O-CDMA) packet network is considered, which offers inherent security in the access networks. The application of O-CDMA to multimedia transmission (voice, data, and video) is investigated. The simultaneous transmission of various services is achieved by assigning to each user unique multiple code signatures. Thus, by applying a parallel mapping technique, we achieve multi-rate services. A random access protocol is proposed, here, where all distinct codes are used, for packet transmission. The codes, Optical Orthogonal Code (OOC), or 1D codes and Wavelength/Time Single-Pulse-per-Row (W/T SPR), or 2D codes, are analyzed. These 1D and 2D codes with varied weight are used to differentiate the Quality of Service (QoS). The theoretical bit error probability corresponding to the quality of each service is established using 1D and 2D codes in the receiver noiseless case and compared. The results show that, using 2D codes QoS in multimedia transmission is better than using 1D codes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Light wave transmission - its compression, amplification, and the optical energy storage in an ultra slow wave medium (USWM) is studied analytically. Our phenomenological treatment is based entirely on the continuity equation for the optical energy flux, and the well-known distribution-product property of Dirac delta-function. The results so obtained provide a clear understanding of some recent experiments on light transmission and its complete stoppage in an USWM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel BioBr/Cd(OH)(2) heterostructures were synthesized by a facile chemical bath method under ambient conditions. A series of BiOBr/Cd(OH)(2) heterostructures were obtained by tuning the Bi/Cd molar ratios. The obtained heterostructures were characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS). Optical properties were studied by UV-visible spectroscopy, diffuse reflectance spectroscopy and photoluminescence (PL). Photocatalytic studies on rhodamine B (RhB) under visible light irradiation showed that the heterostructures are very efficient photocatalysts in mild basic medium. Scavenger test studies confirmed that the photogenerated holes and superoxide radicals (O-2(center dot-)) are the main active species responsible for RhB degradation. Comparison of photoluminescence (PL) intensity suggested that an inhibited charge recombination is crucial for the degradation process over these photocatalysts. Moreover, relative positioning of the valence and conduction band edges of the semiconductors, O-2/O-2(center dot-) and (OH)-O-center dot/H2O redox potentials and HOMO-LUMO levels of RhB appear to be responsible for the hole-specificity of degradation. Photocatalytic recycling experiments indicated the high stability of the catalysts in the reaction medium without any significant loss of activity. This study hence concludes that the heterojunction constructed between Cd(OH)(2) and BiOBr interfaces play a crucial role in influencing the charge carrier dynamics and subsequent photocatalytic activity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Nonlinear optical properties (NLO) of a graphene oxide-silver (GO-Ag) nanocomposite have been investigated by the Z-scan setup at Q-switched Nd:YAG laser second harmonic radiation i.e., at 532 nm excitation in a nanosecond regime. A noteworthy enhancement in the NLO properties in the GO-Ag nanocomposite has been reported in comparison with those of the synthesized GO nanosheet. The extracted value of third order nonlinear susceptibility (chi(3)), at a peak intensity of I-0 = 0.2 GW cm(-2), for GO-Ag has been found to be 2.8 times larger than that of GO. The enhancement in NLO properties in the GO-Ag nanocomposite may be attributed to the complex energy band structures formed during the synthesis which promote resonant transition to the conduction band via surface plasmon resonance (SPR) at low laser intensities and excited state transition (ESA) to the conduction band of GO at higher intensities. Along with this photogenerated charge carriers in the conduction band of silver or the increase in defect states during the formation of the GO-Ag nanocomposite may contribute to ESA. Open aperture Z-scan measurement indicates reverse saturable absorption (RSA) behavior of the synthesized nanocomposite which is a clear indication of the optical limiting (OL) ability of the nanocomposite.