873 resultados para Energy Efficient Algorithms
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica Perfil Energia, Refrigeração e Climatização
Resumo:
This work presents and analyses the fat and fuel properties and the methyl ester profile of biodiesel from animal fats and fish oil (beef tallow, pork lard, chicken fat and sardine oil). Also, their sustainability is evaluated in comparison with rapeseed biodiesel and fossil diesel, currently the dominant liquid fuels for transportation in Europe. Results show that from a technological point of view it is possible to use animal fats and fish oil as feedstock for biodiesel production. From the sustainability perspective, beef tallow biodiesel seems to be the most sustainable one, as its contribution to global warming has the same value of fossil diesel and in terms of energy efficiency it has the best value of the biodiesels under consideration. Although biodiesel is not so energy efficient as fossil diesel there is room to improve it, for example, by replacing the fossil energy used in the process with renewable energy generated using co-products (e.g. straw, biomass cake, glycerine).
Resumo:
Dissertação de Mestrado Apresentado ao Instituto Superior de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Empreendedorismo e Internacionalização, sob orientação da Mestre Anabela Ribeiro
Resumo:
Currently excessive fossil fuel consumption has become a serious problem. People are searching for new solutions of energy production and there are several options to obtain alternative sources of energy without further devastating the already destroyed environment. One of these solutions is growing microalgae, from which biodiesel can be obtained. The microalgae production is a growing business because of its many useful compounds. In order to collect these compounds microalgae must first be harvested and then dried. Nowadays the solutions used for drying use too much energy and therefore are too expensive and not sustainable. The goal of this project, one of the possible choices during the EPS@ISEP 2013 Spring, was to develop a solar microalgae dryer. The multinational team involved in its development was composed of five students, from distinct countries and fields of study, and was the responsible for designing a solar microalgae dryer prototype for the microalgae laboratory of the chemical engineering department at ISEP, suitable for future tests and incorporating control process (in order not to destroy the microalgae during the drying process). The solar microalgae dryer was built to work as a distiller that gets rid of the excess water from the microalgae suspension. This paper presents a possible solution for this problem, the steps to create the device to harvest the microalgae by drying them with the use of solar energy (also used as an energy source for the solar dryer control system), the technologies used to build the solar microalgae dryer, and the benefits it presents compared to current solutions. It also presents the device from the ethical and sustainable viewpoint. Such alternative to already existing methods is competitive as far as energy usage is concerned.
Resumo:
6th Real-Time Scheduling Open Problems Seminar (RTSOPS 2015), Lund, Sweden.
Resumo:
This paper describes the TURTLE project that aim to develop sub-systems with the capability of deep-sea long-term presence. Our motivation is to produce new robotic ascend and descend energy efficient technologies to be incorporated in robotic vehicles used by civil and military stakeholders for underwater operations. TURTLE contribute to the sustainable presence and operations in the sea bottom. Long term presence on sea bottom, increased awareness and operation capabilities in underwater sea and in particular on benthic deeps can only be achieved through the use of advanced technologies, leading to automation of operation, reducing operational costs and increasing efficiency of human activity.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e Computadores
Resumo:
The use of thermal insulation materials for the achievement of energy efficient buildings intended, in most cases, the fulfilment of the required heating and cooling needs of the operational phase. The main goal of this paper is â by using exploratory methodology, namely literature review â identify more sustainable insulating materials and, concomitantly, exposing the paradoxical effect of other insulation materials with high Global Warming Potential (GWP) highlighting the role of the Life Cycle Assessment (LCA), Ecodesign and Environmental Product Declaration (EPD) tools for the framing, comparison and selection of materials. As a main conclusion, it is noticed the lack of environmental information from the producers which, together with acquisition prices that do not internalize Life Cycle Costs (LCC), has led to the use of insulation materials with high carbon footprint and to the "isolation paradox" as well.
Resumo:
Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores
Resumo:
Este estudo tem como objetivo estimar os componentes do balanço de radiação em duas regiões do estado de Rondônia (sudoeste da Amazônia brasileira), a partir de dados do Moderate Resolution Imaging Spectroradiometer (MODIS/TERRA) por intermédio do modelo Surface Energy Balance Algorithms for Land (SEBAL), e validar os resultados com informações adquiridas por torres micrometeorológicas do projeto LBA sob as condições de pastagem (Fazenda Nossa Senhora Aparecida) e floresta (Reserva Biológica do Jaru). A implementação do modelo SEBAL foi realizada diretamente sobre os dados MODIS e incluiu etapas envolvendo o cômputo de índices de vegetação, albedo e transmitância atmosférica. A comparação das estimativas geradas a partir de dados MODIS com as observações resultou em erros relativos para a condição de pastagem variando entre 0,2 e 19,2%, e para a condição de floresta variando entre 0,8 e 15,6%. A integração de dados em diferentes escalas constituiu uma proposição útil para a estimativa e espacialização dos fluxos de radiação na região amazônica, o que pode contribuir para a melhor compreensão da interação entre a floresta tropical e a atmosfera e gerar informações de entrada necessárias aos modelos de superfície acoplados aos modelos de circulação geral da atmosfera.
Resumo:
Aromatic amines are widely used industrial chemicals as their major sources in the environment include several chemical industry sectors such as oil refining, synthetic polymers, dyes, adhesives, rubbers, perfume, pharmaceuticals, pesticides and explosives. They result also from diesel exhaust, combustion of wood chips and rubber and tobacco smoke. Some types of aromatic amines are generated during cooking, special grilled meat and fish, as well. The intensive use and production of these compounds explains its occurrence in the environment such as in air, water and soil, thereby creating a potential for human exposure. Since aromatic amines are potential carcinogenic and toxic agents, they constitute an important class of environmental pollutants of enormous concern, which efficient removal is a crucial task for researchers, so several methods have been investigated and applied. In this chapter the types and general properties of aromatic amine compounds are reviewed. As aromatic amines are continuously entering the environment from various sources and have been designated as high priority pollutants, their presence in the environment must be monitored at concentration levels lower than 30 mg L1, compatible with the limits allowed by the regulations. Consequently, most relevant analytical methods to detect the aromatic amines composition in environmental matrices, and for monitoring their degradation, are essential and will be presented. Those include Spectroscopy, namely UV/visible and Fourier Transform Infrared Spectroscopy (FTIR); Chromatography, in particular Thin Layer (TLC), High Performance Liquid (HPLC) and Gas chromatography (GC); Capillary electrophoresis (CE); Mass spectrometry (MS) and combination of different methods including GC-MS, HPLC-MS and CE-MS. Choosing the best methods depend on their availability, costs, detection limit and sample concentration, which sometimes need to be concentrate or pretreated. However, combined methods may give more complete results based on the complementary information. The environmental impact, toxicity and carcinogenicity of many aromatic amines have been reported and are emphasized in this chapter too. Lately, the conventional aromatic amines degradation and the alternative biodegradation processes are highlighted. Parameters affecting biodegradation, role of different electron acceptors in aerobic and anaerobic biodegradation and kinetics are discussed. Conventional processes including extraction, adsorption onto activated carbon, chemical oxidation, advanced oxidation, electrochemical techniques and irradiation suffer from drawbacks including high costs, formation of hazardous by-products and low efficiency. Biological processes, taking advantage of the naturally processes occurring in environment, have been developed and tested, proved as an economic, energy efficient and environmentally feasible alternative. Aerobic biodegradation is one of the most promising techniques for aromatic amines remediation, but has the drawback of aromatic amines autooxidation once they are exposed to oxygen, instead of their degradation. Higher costs, especially due to power consumption for aeration, can also limit its application. Anaerobic degradation technology is the novel path for treatment of a wide variety of aromatic amines, including industrial wastewater, and will be discussed. However, some are difficult to degrade under anaerobic conditions and, thus, other electron acceptors such as nitrate, iron, sulphate, manganese and carbonate have, alternatively, been tested.
Resumo:
This thesis investigates the challenges of establishing the electric vehicle (EV) in Ireland and how the Irish government and industry are trying to meet them. It further seeks to provide information on Irish consumers’ attitudes towards the electric vehicle and their willingness to purchase it. The review of the literature showed that the Irish government is investing significant funds in trying to establish the market for the electric vehicle and position itself as a world leader in adopting the electric vehicle. The EV will also have an important role to play in how Ireland meets its targets for CO2 reductions towards 2020. Climate change and use of fossil fuels are driving the need for increased use of renewable energy and increased energy independence while reducing the greenhouse gas emissions that are the leading cause of climate change. The transport sector is almost completely dependent on the use of fossil fuel and resultantly is one of the largest sources of these GHG emissions. These issues are leading to the design and production of more energy efficient and environmentally friendly vehicles. The ultimate goal is to achieve a zero emissions vehicle. The electric vehicle is presently the only vehicle being mass produced that has the potential to be zero emissions. There are however issues that customers may not be willing to overlook such as the lower range of the vehicle and the length of time it takes to recharge. Vehicle cost is also an important issue that customers may not overlook. Knowing what the consumer’s attitudes are towards the EV and their willingness to purchase them is important as these new vehicles begin to appear in the showrooms. The consumers will be vital to how successful this market becomes. Using an online questionnaire methodology, in a sample of 118 consumers, the major conclusion to be drawn from the research is that the vehicle price, the convenience to recharge and vehicle range were the three most essential issues for the consumers if they were purchasing an EV. The success of the electric vehicle market may depend on what measures are taken to overcome them.
Resumo:
In Ireland the average energy cost for a household in 2006 was estimated to be €1,767, an increase of 4% on 2005 figures. With the state o f the current economic climate, home owners are beginning to realise the potential of energy efficient construction methods. The Passive House Standard offers a cost efficient and sustainable construction solution compared to the Traditional Irish construction methods. This report focuses on the Cost comparison between Passive House construction and traditional construction methods. The report also focuses on barriers that are slowing market penetration of the Passive House standard in the Irish Market. It also identifies potential energy savings that passive house occupants would benefit from. The report also highlights professional opinions on the future development o f the Passive House Standard in Ireland. The conclusions of this report are that the Passive House Standard is a more financially suitable construction solution compared to that o f a traditional dwelling complying with the Irish Building Regulations. The report also concludes that the Passive House Standard won’t be introduced as an Irish Building Regulation in the future but that it will have a big impact on future building regulations. The hypothesis o f this report is supported by data obtained from a literature review, qualitative data analysis and a case study. The report recommends that in order for the Passive House Standard to penetrate further into the Irish construction market, various barriers must be rectified. Local manufactures must start producing suitable components that suit the Passive House specification. The Building Energy Rating system must be altered in order for the Passive House to achieve its potential BER rating.
Resumo:
In this work, energy concepts for two completely different properties are sought. The first property is a deconstruction of an apartment building with 26 residential units on two separate buildings with 6 residential units. The energy concepts should enable an energy efficient house and allow options for renewable fuels. The second property includes four buildings which are supplied with fuel oil. A change to use natural gas is planned and wherever possible CHP technology for highly efficient use of energy.