927 resultados para Endocrine-disrupting chemicals
Resumo:
Major industrial accidents pose a serious threat to surrounding habitats. Each accident is unique in terms of pollutants released, pollutant concentrations and pollutant dispersal. The habitats receiving the pollutant(s) are also unique. These factors mean that assessing the environmental and ecological impact of any given pollution event will be complex. Case histories of the biological impact of chemicals released from industrial accidents are reviewed to determine how to assess ecotoxicity of pollutants involved.
Resumo:
The combination of bio- and chemo-catalysis to form a single synthetic route is a powerful methodology for the improvement of chemical synthesis. The extreme methods of biocatalysis (whole cell and isolated enzyme) fulfill very different roles. Biocatalysis by isolated enzymes enables highly efficient chemical transformations of extremely high selectivity and low contamination; however, conditions and substrates are limited to a narrow range. Whole cell biocatalysis enables the conversion of crude substrates, such as those derived from biomass; however, the products tend to be impure and delivered in dilute aqueous solution. Chemocatalysis is a well-established technique, and the addition of chemical catalysis and chemocatalytic methods to biocatalysis enables synthetic chemists to avoid the shortcomings of a biocatalytic step. For example, in enzymatic catalysis the addition of a chemical catalyst can allow the conversion of a racemic alcohol to an enantiopure, instead of racemic, product. In whole cell biocatalysis chemical reagents can assist the separation, transformation, and further isolation of the functionality of interest. The cooperation of bio- and chemocatalysts enables sustainable production of chemicals that would be impossible using biocatalysis alone, while achieving selectivities and using substrates not currently possible with chemocatalysis alone.
Resumo:
Currently, there are no biomarkers which can identify patients with an increased risk of developing urothelial cancer as a result of occupational chemical exposure. The aim of this study was to evaluate the relationships between final diagnosis and 22 biomarkers measured in urine, serum and plasma collected from 156 hematuric patients. Fourteen of the 80 patients (17.5%) with urothelial cancer and 13/76 (17.1%) of the controls were deemed to have a history of chemical exposure. We applied Fisher's exact tests to explore associations between chemical exposure and final diagnosis, and tumor stage and grade, where applicable; ANOVA and t-test to compare age across patients with and without chemical exposure; and Zelen's exact test to evaluate relationships across final diagnosis, chemical exposure and smoking. Following pre-selection of biomarkers using Lasso, we identified biomarkers with differential levels across patients with and without chemical exposure using Welch's t-test. Using a one-sided t-test and considering multiple testing using FDR, we observed that TM levels in urine were significantly higher in samples from patients with a history of chemical exposure regardless of their diagnosis as control or urothelial cancer (one-sided t-test, pUC = 0.014 and pCTL = 0.043); in the presence of dipstick protein and when urinary pH levels ≤ 6 (p = 0.003), but not in the presence of dipstick blood (p = 0.115). Urothelial cancer patients with a history of chemical exposure were significantly younger (64.1 years) than those without chemical exposure (70.2 years) (one-sided t-test p-value = 0.012); and their tumors were higher grade (Fisher's exact test; p = 0.008). There was a strong association between a history of chemical exposure and smoking in urothelial cancer patients (Zelen's exact test; p = 0.025). Elevated urinary thrombomodulin levels could have the potential to identify chemical exposure in hematuric patients at high risk of developing urothelial cancer.
Resumo:
The introduction of chemicals into the environment by human activities may represent a serious risk to environmental and human health. Environmental risk assessment requires the use of efficient and sensitive tools to determine the impact of contaminants on the ecosystems. The use of zebrafish for the toxicity assessment of pharmaceuticals, drugs, and pollutants, is becoming well accepted due to zebrafish unique advantages for the screening of compounds for hazard identification. The aim of the present work is to apply toxicogenomic approaches to identify novel biomarkers and uncovered potential modes of action of classic and emergent contaminants able to disrupt endocrine systems, such as the Retinoic Acid Receptor, Retinoid X Receptor and the Aryl Hydrocarbon Receptor. This study relies on different nuclear and cytosolic protein receptors and other conditional (ligand- or stress- activated) transcriptional factors that are intimately involved in the regulation of defensome genes and in mechanisms of chemical toxicity. The transcriptomic effects of organic compounds, endogenous compounds, and nanoparticles were analysed during the early stages of zebrafish development. Studying the gene expression profiles of exposed and unexposed organisms to pollutants using microarrays allowed the identification of specific gene markers and to establish a "genetic code" for the tested compounds. Changes in gene expression were observed at toxicant concentrations that did not cause morphological effects. Even at low toxicant concentrations, the observed changes in transcript levels were robust for some target genes. Microarray responses of selected genes were further complemented by the real time quantitative polymerase chain reaction (qRT-PCR) methodology. The combination of bio-informatic, toxicological analyses of differential gene expression profiles, and biochemical and phenotypic responses across the treatments allowed the identification of uncovered potential mechanisms of action. In addition, this work provides an integrated set of tools that can be used to aid management-decision making by improving the predictive capability to measure environmental stress of contaminants in freshwater ecosystems. This study also illustrates the potential of zebrafish embryos for the systematic, large-scale analysis of chemical effects on developing vertebrates.
Resumo:
The global aim of this thesis was to evaluate and assess the effects of a pesticide (dimethoate) and a metal (nickel), as model chemicals, within different organization levels, starting at the detoxification pathways (enzymatic biomarkers) and energy costs associated (energy content quantification, energy consumption and CEA) along with the physiological alterations at the individual and population level (mortality), leading to a metabolomic analysis (using liquid 1H-NMR) and finally a gene expression analysis (transcriptome and RT-qPCR analysis). To better understand potential variations in response to stressors, abiotic factors were also assessed in terrestrial isopods such as temperature, soil moisture and UV radiation. The evaluation performed using biochemical biomarkers and energy related parameters showed that increases in temperature might negatively affect the organisms by generating oxidative stress. It also showed that this species is acclimated to environments with low soil moisture, and that in high moisture scenarios there was a short gap between the optimal and adverse conditions that led to increased mortality. As for UV-R, doses nowadays present have shown to induce significant negative impact on these organisms. The long-term exposure to dimethoate showed that besides the neurotoxicity resulting from acetylcholinesterase inhibition, this stressor also caused oxidative stress. This effect was observed for both concentrations used (recommended field dose application and a below EC50 value) and that its combination with different temperatures (20ºC and 25ºC) showed different response patterns. It was also observed that dimethoate’s degradation rate in soils was higher in the presence of isopods. In a similar study performed with nickel, oxidative stress was also observed. But, in the case of this stressor exposure, organisms showed a strategy where the energetic costs necessary for detoxification (biomarkers) seemed to be compensated by positive alterations in the energy related parameters. In this work we presented for the first time a metabolomic profile of terrestrial isopods exposed to stressors (dimethoate and niquel), since until the moment only a previous study was performed on a metabolomic evaluation in nonexposed isopods. In the first part of the study we identify 24 new metabolites that had not been described previously. On the second part of the study a metabolomic profile variation of abstract non-exposed organism throughout the exposure was presented and finally the metabolomic profile of organisms exposed to dimethoate and nickel. The exposure to nickel suggested alteration in growth, moult, haemocyanin and glutathione synthesis, energy pathways and in osmoregulation. As for the exposure to dimethoate alterations in osmoregulation, energy pathways, moult and neurotransmission were also suggested. In this work it was also presented the first full body transcriptome of a terrestrial isopod from the species Porcellionides pruinosus, which will complement the scarce information available for this group of organisms. This transcriptome also served as base for a RNA-Seq and a RT-qPCR analysis. The results of the RNA-Seq analysis performed in organisms exposed to nickel showed that this stressor negatively impacted at the genetic and epigenetic levels, in the trafficking, storage and elimination of metals, generates oxidative stress, inducing neurotoxicity and also affecting reproduction. These results were confirmed through RT-qPCR. As for the impact of dimethoate on these organisms it was only accessed through RT-qPCR and showed oxidative stress, an impact in neurotransmission, in epigenetic markers, DNA repair and cell cycle impairment. This study allowed the design of an Adverse Outcome Pathway draft that can be used further on for legislative purposes.
Resumo:
In this paper I look into the life and art of May Stevens, an American working class artist, feminist and committed political activist. I am particularly interested in how Stevens' artwork is inextricably interwoven with her politics, constituting, as I will argue, an assemblage of artpolitics. The discussion draws on Jacques Rancière's analyses of the politics of aesthetics and particularly his notion of ‘the distribution of the sensible’. What I argue is that although Rancière's approach to the politics of aesthetics illuminates an understanding and appreciation of Stevens' art, his idea about the redistribution of the sensible is problematic. It is here that the notion of artpolitics as an assemblage opens up possibilities for a critical project that goes beyond the limitations of Rancière's proposition.
Resumo:
Tese dout., Biologia, Universidade do Algarve, 2005
Resumo:
In ecotoxicology a major focus is in the aquatic environment, not only because it presents a great economic value to man but it is an ecosystem widely affected by the growing anthropogenic pollution. Most of the studies performed relate to adverse effects in development, reproductive or endocrine disruption but little is known about the possible effects in bone formation and skeletal development. In this study, we set out to evaluate the effects of 8 aquatic pollutants on the skeletal development using an in vivo system, the zebrafish larvae aged 20 days post-fertilization, through chronic exposure. Several endpoints were considered such as the cumulative mortality, total length, occurrence of skeletal deformities and marker gene expression. We were able to establish LD50 values for some pollutants, like 3-methylcholanthrene, lindane, diclofenac, cobalt and vanadate and found that the total length was not affected by any of the pollutants tested. Cobalt was the most harmful chemical to affect hatching time, severely affecting the ability of the zebrafish embryos to hatch and overall the number of deformities increased upon exposure to tested chemicals but no patterns of deformities were identified. We also propose that 3-methylcholanthrene has an osteogenic effect, affecting osteoblast and osteoclast function and that op levels can act as a mediator of 3-methylcholanthrene toxic stress to the osteoblast. In turn we found naphthalene to probably have a chondrogenic effect. Our results provided new insights into the potential osteotoxicity of environmental pollutants. Future studies should aim at confirming these preliminary data and at determining mechanisms of osteotoxicity.
Resumo:
In life cycle impact assessment (LCIA) models, the sorption of the ionic fraction of dissociating organic chemicals is not adequately modeled because conventional non-polar partitioning models are applied. Therefore, high uncertainties are expected when modeling the mobility, as well as the bioavailability for uptake by exposed biota and degradation, of dissociating organic chemicals. Alternative regressions that account for the ionized fraction of a molecule to estimate fate parameters were applied to the USEtox model. The most sensitive model parameters in the estimation of ecotoxicological characterization factors (CFs) of micropollutants were evaluated by Monte Carlo analysis in both the default USEtox model and the alternative approach. Negligible differences of CFs values and 95% confidence limits between the two approaches were estimated for direct emissions to the freshwater compartment; however the default USEtox model overestimates CFs and the 95% confidence limits of basic compounds up to three orders and four orders of magnitude, respectively, relatively to the alternative approach for emissions to the agricultural soil compartment. For three emission scenarios, LCIA results show that the default USEtox model overestimates freshwater ecotoxicity impacts for the emission scenarios to agricultural soil by one order of magnitude, and larger confidence limits were estimated, relatively to the alternative approach.
Resumo:
BACKGROUND: Although long-term implications of cancer in childhood or adolescence with regard to medical conditions are well documented, the impact on mental health and on response to stress, which may be an indicator of psychological vulnerability, is not yet well understood. In this study, psychological and physiological responses to stress were examined.¦PROCEDURE: Fifty-three participants aged 18-39 years (n = 25 survivors of childhood or adolescence cancer, n = 28 controls) underwent an experimental stress test, the Trier Social Stress Test (TSST). Participants were asked to provide repeated evaluations of perceived stress on visual-analogical scales and blood samples were collected before and after the TSST to measure plasma cortisol.¦RESULTS: The psychological perception of stress was not different between the two groups. However, the cancer survivors group showed a higher global plasma cortisol level as well as higher amplitude in the response to the TSST. The global cortisol level in cancer survivors was increased when depression symptoms were present. The subjective perception of stress and the plasma cortisol levels were only marginally correlated in both groups.¦CONCLUSIONS: It is suggested that the exposure to a life-threatening experience in childhood/adolescence increases the endocrine response to stress, and that the presence of depressive symptoms is associated with an elevation of plasma cortisol levels. A better knowledge of these mechanisms is important given that the dysregulations of the stress responses may cause psychological vulnerability. Pediatr Blood Cancer 2012; 59: 138-143. © 2011 Wiley Periodicals, Inc.
Resumo:
Phthalates are suspected to be endocrine disruptors. Di(2-ethylhexyl) phthalate (DEHP) is assumed to have low dermal absorption; however, previous in vitro skin permeation studies have shown large permeation differences. Our aims were to determine DEHP permeation parameters and assess extent of skin DEHP metabolism among workers highly exposed to these lipophilic, low volatile substances. Surgically removed skin from patients undergoing abdominoplasty was immediately dermatomed (800 μm) and mounted on flow-through diffusion cells (1.77 cm(2)) operating at 32°C with cell culture media (aqueous solution) as the reservoir liquid. The cells were dosed either with neat DEHP or emulsified in aqueous solution (166 μg/ml). Samples were analysed by HPLC-MS/MS. DEHP permeated human viable skin only as the metabolite MEHP (100%) after 8h of exposure. Human skin was able to further oxidize MEHP to 5-oxo-MEHP. Neat DEHP applied to the skin hardly permeated skin while the aqueous solution readily permeated skin measured in both cases as concentration of MEHP in the receptor liquid. DEHP pass through human skin, detected as MEHP only when emulsified in aqueous solution, and to a far lesser degree when applied neat to the skin. Using results from older in vitro skin permeation studies with non-viable skin may underestimate skin exposures. Our results are in overall agreement with newer phthalate skin permeation studies.
Resumo:
Objective-Inflammation and proteolysis crucially contribute to myocardial ischemia and reperfusion injury. The extracellular matrix metalloproteinase inducer EMMPRIN (CD147) and its ligand cyclophilin A (CyPA) may be involved in both processes. The aim of the study was to characterize the role of the CD147 and CyPA interplay in myocardial ischemia/reperfusion (I/R) injury.Methods and Results-Immunohistochemistry showed enhanced expression of CD147 and CyPA in myocardial sections from human autopsies of patients who had died from acute myocardial infarction and from mice at 24 hours after I/R. At 24 hours and 7 days after I/R, the infarct size was reduced in CD147(+/-) mice vs CD147(+/+) mice (C57Bl/6), in mice (C57Bl/6) treated with monoclonal antibody anti-CD147 vs control monoclonal antibody, and in CyPA(-/-) mice vs CyPA(+/+) mice (129S6/SvEv), all of which are associated with reduced monocyte and neutrophil recruitment at 24 hours and with a preserved systolic function at 7 days. The combination of CyPA(-/-) mice with anti-CD147 treatment did not yield further protection compared with either inhibition strategy alone. In vitro, treatment with CyPA induced monocyte chemotaxis in a CD147-and phosphatidylinositol 3-kinase-dependent manner and induced monocyte rolling and adhesion to endothelium (human umbilical vein endothelial cells) under flow in a CD147-dependent manner.Conclusion-CD147 and its ligand CyPA are inflammatory mediators after myocardial ischemia and reperfusion and represent potential targets to prevent myocardial I/R injury.
Resumo:
Drawing on a growing literature on the interconnection of queer theory, sexuality and space, this thesis critically assesses the development, implementation and impact of a campus-based Positive Space Campaign aimed at raising the visibility and number of respectful, supportive, educational and welcoming spaces for lesbian, gay, bi, trans, two-spirited, queer and questioning (LGBTQ) students staff and faculty. The analysis, based on participatory action research (PAR), interrogates the extent to which the Positive Space Campaign challenges heteronormativity on campus. I contend that the Campaign, in its attempt to challenge dominant notions of sex, gender and sexuality, disrupts heterosexual space. Further, as I consider the meanings of 'queer', I consider the extent to which Positive Space Campaigns may be 'queering' space, by contributing to an 'imagined' campus space free of sexual and gender-based discrimination. The case study contributes to queer theory, the literature on sexuality and space, the literature on queer organizing in educational spaces and to broader queer organizing efforts in Canada.
Resumo:
I investigated factors of psychopathy (fearless dominance, self-centered impulsivity) and hormones (testosterone, cortisol, estradiol) in predicting costly and non-costly reactive aggression. I hypothesized that whereas self-centred impulsivity (SCI) would promote costly aggression, fearless dominance (FD) would promote non-costly aggression. Costly aggression was measured using the Point Subtraction Aggression Paradigm and noncostly aggression was measured using one-shot dictator games. In women (n = 97; M age = 19.86 years), greater SCI and lower baseline estradiol predicted greater costly aggression; also, greater FD predicted greater non-costly aggression, particularly among women with lower SCI. In men (n = 104; M age = 20.15 years), psychopathy and endocrine function did not predict costly aggression; however, greater FD and greater increases in testosterone were associated with greater non-costly aggression. Thus, there are sex-specific links between psychopathic personality traits, hormones, and aggressive behaviour, and psychopathic traits and endocrine function predict aggressive behaviour independently of each other.