796 resultados para Empirical Algorithm Analysis


Relevância:

40.00% 40.00%

Publicador:

Resumo:

QTL detection experiments in livestock species commonly use the half-sib design. Each male is mated to a number of females, each female producing a limited number of progeny. Analysis consists of attempting to detect associations between phenotype and genotype measured on the progeny. When family sizes are limiting experimenters may wish to incorporate as much information as possible into a single analysis. However, combining information across sires is problematic because of incomplete linkage disequilibrium between the markers and the QTL in the population. This study describes formulae for obtaining MLEs via the expectation maximization (EM) algorithm for use in a multiple-trait, multiple-family analysis. A model specifying a QTL with only two alleles, and a common within sire error variance is assumed. Compared to single-family analyses, power can be improved up to fourfold with multi-family analyses. The accuracy and precision of QTL location estimates are also substantially improved. With small family sizes, the multi-family, multi-trait analyses reduce substantially, but not totally remove, biases in QTL effect estimates. In situations where multiple QTL alleles are segregating the multi-family analysis will average out the effects of the different QTL alleles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We revisit the one-unit gradient ICA algorithm derived from the kurtosis function. By carefully studying properties of the stationary points of the discrete-time one-unit gradient ICA algorithm, with suitable condition on the learning rate, convergence can be proved. The condition on the learning rate helps alleviate the guesswork that accompanies the problem of choosing suitable learning rate in practical computation. These results may be useful to extract independent source signals on-line.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Objective: The description and evaluation of the performance of a new real-time seizure detection algorithm in the newborn infant. Methods: The algorithm includes parallel fragmentation of EEG signal into waves; wave-feature extraction and averaging; elementary, preliminary and final detection. The algorithm detects EEG waves with heightened regularity, using wave intervals, amplitudes and shapes. The performance of the algorithm was assessed with the use of event-based and liberal and conservative time-based approaches and compared with the performance of Gotman's and Liu's algorithms. Results: The algorithm was assessed on multi-channel EEG records of 55 neonates including 17 with seizures. The algorithm showed sensitivities ranging 83-95% with positive predictive values (PPV) 48-77%. There were 2.0 false positive detections per hour. In comparison, Gotman's algorithm (with 30 s gap-closing procedure) displayed sensitivities of 45-88% and PPV 29-56%; with 7.4 false positives per hour and Liu's algorithm displayed sensitivities of 96-99%, and PPV 10-25%; with 15.7 false positives per hour. Conclusions: The wave-sequence analysis based algorithm displayed higher sensitivity, higher PPV and a substantially lower level of false positives than two previously published algorithms. Significance: The proposed algorithm provides a basis for major improvements in neonatal seizure detection and monitoring. Published by Elsevier Ireland Ltd. on behalf of International Federation of Clinical Neurophysiology.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Based primarily on data from indepth interviews with senior journalists and journalism educators as well as a content analysis of journalism curricula, this paper sets out to provide an overview of the demand, overall provision structure, teaching materials and methods of Vietnamese journalism education. It first shows that with a fast expansion in both size and substance, the Vietnamese media system is beginning to feel the urgent need for formal journalism education. However, the country's major journalism programs have been criticised for producing hundreds of unqualified journalism graduates a year. In general, the most deplorable aspects of Vietnamese journalism education include its body of outdated and awkward teaching material, its undue focus on theories and politics at the expense of practical training, its lack of qualified teaching staff and its inadequate teaching resources.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper investigates the performance of EASI algorithm and the proposed EKENS algorithm for linear and nonlinear mixtures. The proposed EKENS algorithm is based on the modified equivariant algorithm and kernel density estimation. Theory and characteristic of both the algorithms are discussed for blind source separation model. The separation structure of nonlinear mixtures is based on a nonlinear stage followed by a linear stage. Simulations with artificial and natural data demonstrate the feasibility and good performance of the proposed EKENS algorithm.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Among the Solar System’s bodies, Moon, Mercury and Mars are at present, or have been in the recent years, object of space missions aimed, among other topics, also at improving our knowledge about surface composition. Between the techniques to detect planet’s mineralogical composition, both from remote and close range platforms, visible and near-infrared reflectance (VNIR) spectroscopy is a powerful tool, because crystal field absorption bands are related to particular transitional metals in well-defined crystal structures, e.g., Fe2+ in M1 and M2 sites of olivine or pyroxene (Burns, 1993). Thanks to the improvements in the spectrometers onboard the recent missions, a more detailed interpretation of the planetary surfaces can now be delineated. However, quantitative interpretation of planetary surface mineralogy could not always be a simple task. In fact, several factors such as the mineral chemistry, the presence of different minerals that absorb in a narrow spectral range, the regolith with a variable particle size range, the space weathering, the atmosphere composition etc., act in unpredictable ways on the reflectance spectra on a planetary surface (Serventi et al., 2014). One method for the interpretation of reflectance spectra of unknown materials involves the study of a number of spectra acquired in the laboratory under different conditions, such as different mineral abundances or different particle sizes, in order to derive empirical trends. This is the methodology that has been followed in this PhD thesis: the single factors previously listed have been analyzed, creating, in the laboratory, a set of terrestrial analogues with well-defined composition and size. The aim of this work is to provide new tools and criteria to improve the knowledge of the composition of planetary surfaces. In particular, mixtures composed with different content and chemistry of plagioclase and mafic minerals have been spectroscopically analyzed at different particle sizes and with different mineral relative percentages. The reflectance spectra of each mixture have been analyzed both qualitatively (using the software ORIGIN®) and quantitatively applying the Modified Gaussian Model (MGM, Sunshine et al., 1990) algorithm. In particular, the spectral parameter variations of each absorption band have been evaluated versus the volumetric FeO% content in the PL phase and versus the PL modal abundance. This delineated calibration curves of composition vs. spectral parameters and allow implementation of spectral libraries. Furthermore, the trends derived from terrestrial analogues here analyzed and from analogues in the literature have been applied for the interpretation of hyperspectral images of both plagioclase-rich (Moon) and plagioclase-poor (Mars) bodies.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recent discussion of the knowledge-based economy draws increasingly attention to the role that the creation and management of knowledge plays in economic development. Development of human capital, the principal mechanism for knowledge creation and management, becomes a central issue for policy-makers and practitioners at the regional, as well as national, level. Facing competition both within and across nations, regional policy-makers view human capital development as a key to strengthening the positions of their economies in the global market. Against this background, the aim of this study is to go some way towards answering the question of whether, and how, investment in education and vocational training at regional level provides these territorial units with comparative advantages. The study reviews literature in economics and economic geography on economic growth (Chapter 2). In growth model literature, human capital has gained increased recognition as a key production factor along with physical capital and labour. Although leaving technical progress as an exogenous factor, neoclassical Solow-Swan models have improved their estimates through the inclusion of human capital. In contrast, endogenous growth models place investment in research at centre stage in accounting for technical progress. As a result, they often focus upon research workers, who embody high-order human capital, as a key variable in their framework. An issue of discussion is how human capital facilitates economic growth: is it the level of its stock or its accumulation that influences the rate of growth? In addition, these economic models are criticised in economic geography literature for their failure to consider spatial aspects of economic development, and particularly for their lack of attention to tacit knowledge and urban environments that facilitate the exchange of such knowledge. Our empirical analysis of European regions (Chapter 3) shows that investment by individuals in human capital formation has distinct patterns. Those regions with a higher level of investment in tertiary education tend to have a larger concentration of information and communication technology (ICT) sectors (including provision of ICT services and manufacture of ICT devices and equipment) and research functions. Not surprisingly, regions with major metropolitan areas where higher education institutions are located show a high enrolment rate for tertiary education, suggesting a possible link to the demand from high-order corporate functions located there. Furthermore, the rate of human capital development (at the level of vocational type of upper secondary education) appears to have significant association with the level of entrepreneurship in emerging industries such as ICT-related services and ICT manufacturing, whereas such association is not found with traditional manufacturing industries. In general, a high level of investment by individuals in tertiary education is found in those regions that accommodate high-tech industries and high-order corporate functions such as research and development (R&D). These functions are supported through the urban infrastructure and public science base, facilitating exchange of tacit knowledge. They also enjoy a low unemployment rate. However, the existing stock of human and physical capital in those regions with a high level of urban infrastructure does not lead to a high rate of economic growth. Our empirical analysis demonstrates that the rate of economic growth is determined by the accumulation of human and physical capital, not by level of their existing stocks. We found no significant effects of scale that would favour those regions with a larger stock of human capital. The primary policy implication of our study is that, in order to facilitate economic growth, education and training need to supply human capital at a faster pace than simply replenishing it as it disappears from the labour market. Given the significant impact of high-order human capital (such as business R&D staff in our case study) as well as the increasingly fast pace of technological change that makes human capital obsolete, a concerted effort needs to be made to facilitate its continuous development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We develop a taxonomy that relates foreign direct investment (FDI) motivation (technology- and cost-based) to its anticipated effects on host countries domestic productivity. We then empirically examine the effects of FDI into the United Kingdom on domestic productivity, and find that different types of FDI have markedly different productivity spillover effects, which are consistent with the conceptual analysis. The UK gains substantially only from inward FDI motivated by a strong technology-based ownership advantage. As theory predicts, inward FDI motivated by technology-sourcing considerations leads to no productivity spillovers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Derivational morphology proposes meaningful connections between words and is largely unrepresented in lexical databases. This thesis presents a project to enrich a lexical database with morphological links and to evaluate their contribution to disambiguation. A lexical database with sense distinctions was required. WordNet was chosen because of its free availability and widespread use. Its suitability was assessed through critical evaluation with respect to specifications and criticisms, using a transparent, extensible model. The identification of serious shortcomings suggested a portable enrichment methodology, applicable to alternative resources. Although 40% of the most frequent words are prepositions, they have been largely ignored by computational linguists, so addition of prepositions was also required. The preferred approach to morphological enrichment was to infer relations from phenomena discovered algorithmically. Both existing databases and existing algorithms can capture regular morphological relations, but cannot capture exceptions correctly; neither of them provide any semantic information. Some morphological analysis algorithms are subject to the fallacy that morphological analysis can be performed simply by segmentation. Morphological rules, grounded in observation and etymology, govern associations between and attachment of suffixes and contribute to defining the meaning of morphological relationships. Specifying character substitutions circumvents the segmentation fallacy. Morphological rules are prone to undergeneration, minimised through a variable lexical validity requirement, and overgeneration, minimised by rule reformulation and restricting monosyllabic output. Rules take into account the morphology of ancestor languages through co-occurrences of morphological patterns. Multiple rules applicable to an input suffix need their precedence established. The resistance of prefixations to segmentation has been addressed by identifying linking vowel exceptions and irregular prefixes. The automatic affix discovery algorithm applies heuristics to identify meaningful affixes and is combined with morphological rules into a hybrid model, fed only with empirical data, collected without supervision. Further algorithms apply the rules optimally to automatically pre-identified suffixes and break words into their component morphemes. To handle exceptions, stoplists were created in response to initial errors and fed back into the model through iterative development, leading to 100% precision, contestable only on lexicographic criteria. Stoplist length is minimised by special treatment of monosyllables and reformulation of rules. 96% of words and phrases are analysed. 218,802 directed derivational links have been encoded in the lexicon rather than the wordnet component of the model because the lexicon provides the optimal clustering of word senses. Both links and analyser are portable to an alternative lexicon. The evaluation uses the extended gloss overlaps disambiguation algorithm. The enriched model outperformed WordNet in terms of recall without loss of precision. Failure of all experiments to outperform disambiguation by frequency reflects on WordNet sense distinctions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The techniques and insights from two distinct areas of financial economic modelling are combined to provide evidence of the influence of firm size on the volatility of stock portfolio returns. Portfolio returns are characterized by positive serial correlation induced by the varying levels of non-synchronous trading among the component stocks. This serial correlation is greatest for portfolios of small firms. The conditional volatility of stock returns has been shown to be well represented by the GARCH family of statistical processes. Using a GARCH model of the variance of capitalization-based portfolio returns, conditioned on the autocorrelation structure in the conditional mean, striking differences related to firm size are uncovered.