983 resultados para Emission rates
Resumo:
This thesis presents an original approach to parametric speech coding at rates below 1 kbitsjsec, primarily for speech storage applications. Essential processes considered in this research encompass efficient characterization of evolutionary configuration of vocal tract to follow phonemic features with high fidelity, representation of speech excitation using minimal parameters with minor degradation in naturalness of synthesized speech, and finally, quantization of resulting parameters at the nominated rates. For encoding speech spectral features, a new method relying on Temporal Decomposition (TD) is developed which efficiently compresses spectral information through interpolation between most steady points over time trajectories of spectral parameters using a new basis function. The compression ratio provided by the method is independent of the updating rate of the feature vectors, hence allows high resolution in tracking significant temporal variations of speech formants with no effect on the spectral data rate. Accordingly, regardless of the quantization technique employed, the method yields a high compression ratio without sacrificing speech intelligibility. Several new techniques for improving performance of the interpolation of spectral parameters through phonetically-based analysis are proposed and implemented in this research, comprising event approximated TD, near-optimal shaping event approximating functions, efficient speech parametrization for TD on the basis of an extensive investigation originally reported in this thesis, and a hierarchical error minimization algorithm for decomposition of feature parameters which significantly reduces the complexity of the interpolation process. Speech excitation in this work is characterized based on a novel Multi-Band Excitation paradigm which accurately determines the harmonic structure in the LPC (linear predictive coding) residual spectra, within individual bands, using the concept 11 of Instantaneous Frequency (IF) estimation in frequency domain. The model yields aneffective two-band approximation to excitation and computes pitch and voicing with high accuracy as well. New methods for interpolative coding of pitch and gain contours are also developed in this thesis. For pitch, relying on the correlation between phonetic evolution and pitch variations during voiced speech segments, TD is employed to interpolate the pitch contour between critical points introduced by event centroids. This compresses pitch contour in the ratio of about 1/10 with negligible error. To approximate gain contour, a set of uniformly-distributed Gaussian event-like functions is used which reduces the amount of gain information to about 1/6 with acceptable accuracy. The thesis also addresses a new quantization method applied to spectral features on the basis of statistical properties and spectral sensitivity of spectral parameters extracted from TD-based analysis. The experimental results show that good quality speech, comparable to that of conventional coders at rates over 2 kbits/sec, can be achieved at rates 650-990 bits/sec.
Resumo:
Nitrous oxide (N2O) is a major greenhouse gas (GHG) product of intensive agriculture. Fertilizer nitrogen (N) rate is the best single predictor of N2O emissions in row-crop agriculture in the US Midwest. We use this relationship to propose a transparent, scientifically robust protocol that can be utilized by developers of agricultural offset projects for generating fungible GHG emission reduction credits for the emerging US carbon cap and trade market. By coupling predicted N2O flux with the recently developed maximum return to N (MRTN) approach for determining economically profitable N input rates for optimized crop yield, we provide the basis for incentivizing N2O reductions without affecting yields. The protocol, if widely adopted, could reduce N2O from fertilized row-crop agriculture by more than 50%. Although other management and environmental factors can influence N2O emissions, fertilizer N rate can be viewed as a single unambiguous proxy—a transparent, tangible, and readily manageable commodity. Our protocol addresses baseline establishment, additionality, permanence, variability, and leakage, and provides for producers and other stakeholders the economic and environmental incentives necessary for adoption of agricultural N2O reduction offset projects.
Identification of acoustic emission wave modes for accurate source location in plate-like structures
Resumo:
Acoustic emission (AE) technique is a popular tool used for structural health monitoring of civil, mechanical and aerospace structures. It is a non-destructive method based on rapid release of energy within a material by crack initiation or growth in the form of stress waves. Recording of these waves by means of sensors and subsequent analysis of the recorded signals convey information about the nature of the source. Ability to locate the source of stress waves is an important advantage of AE technique; but as AE waves travel in various modes and may undergo mode conversions, understanding of the modes (‘modal analysis’) is often necessary in order to determine source location accurately. This paper presents results of experiments aimed at finding locations of artificial AE sources on a thin plate and identifying wave modes in the recorded signal waveforms. Different source locating techniques will be investigated and importance of wave mode identification will be explored.
Resumo:
Biodiesel is a renewable fuel that has been shown to reduce many exhaust emissions, except oxides of nitrogen (NOx), in diesel engine cars. This is of special concern in inner urban areas that are subject to strict environmental regulations, such as EURO norms. Also, the use of pure biodiesel (B100) is inhibited because of its higher NOx emissions compared to petroleum diesel fuel. The aim of this present work is to investigate the effect of the iodine value and cetane number of various biodiesel fuels obtained from different feed stocks on the combustion and NOx emission characteristics of a direct injection (DI) diesel engine. The biodiesel fuels were chosen from various feed stocks such as coconut, palm kernel, mahua (Madhuca indica), pongamia pinnata, jatropha curcas, rice bran, and sesame seed oils. The experimental results show an approximately linear relationship between iodine value and NOx emissions. The biodiesels obtained from coconut and palm kernel showed lower NOx levels than diesel, but other biodiesels showed an increase in NOx. It was observed that the nature of the fatty acids of the biodiesel fuels had a significant influence on the NOx emissions. Also, the cetane numbers of the biodiesel fuels are affected both premixed combustion and the combustion rate, which further affected the amount of NOx formation. It was concluded that NOx emissions are influenced by many parameters of biodiesel fuels, particularly the iodine value and cetane number.
Resumo:
Fuzzy logic has been applied to control traffic at road junctions. A simple controller with one fixed rule-set is inadequate to minimise delays when traffic flow rate is time-varying and likely to span a wide range. To achieve better control, fuzzy rules adapted to the current traffic conditions are used.
Resumo:
The structure and thermal stability between typical China kaolinite and halloysite were analysed by X-ray diffraction (XRD), infrared spectroscopy, infrared emission spectroscopy (IES) and Raman spectroscopy. Infrared emission spectroscopy over the temperature range of 300 to 700 °C has been used to characterise the thermal decomposition of both kaolinite and halloysite. Halloysite is characterised by two bands in the water bending region at 1629 and 1648 cm-1, attributed to structure water and coordinated water in the interlayer. Well defined hydroxyl stretching bands at around 3695, 3679, 3652 and 3625 cm-1 are observed for both kaolinite and halloysite. In the 550 °C infrared emission spectrum of halloysite is similar to that of kaolinite in 650-1350 cm-1 region. The infrared emission spectra of halloysite were found to be considerably different to that of kaolinite at lower temperatures. This difference is attributed to the fundamental difference in the structure of the two minerals.
Resumo:
The thermal decomposition of halloysite-potassium acetate intercalation compound was investigated by thermogravimetric analysis and infrared emission spectroscopy. The X-ray diffraction patterns indicated that intercalation of potassium acetate into halloysite caused an increase of the basal spacing from 1.00 to 1.41 nm. The thermogravimetry results show that the mass losses of intercalation the compound occur in main three main steps, which correspond to (a) the loss of adsorbed water (b) the loss of coordination water and (c) the loss of potassium acetate and dehydroxylation. The temperature of dehydroxylation and dehydration of halloysite is decreased about 100 °C. The infrared emission spectra clearly show the decomposition and dehydroxylation of the halloysite intercalation compound when the temperature is raised. The dehydration of the intercalation compound is followed by the loss of intensity of the stretching vibration bands at region 3600-3200 cm-1. Dehydroxylation is followed by the decrease in intensity in the bands between 3695 and 3620 cm-1. Dehydration was completed by 300 °C and partial dehydroxylation by 350 °C. The inner hydroxyl group remained until around 500 °C.
Resumo:
Background, aim, and scope Urban motor vehicle fleets are a major source of particulate matter pollution, especially of ultrafine particles (diameters < 0.1 µm), and exposure to particulate matter has known serious health effects. A considerable body of literature is available on vehicle particle emission factors derived using a wide range of different measurement methods for different particle sizes, conducted in different parts of the world. Therefore the choice as to which are the most suitable particle emission factors to use in transport modelling and health impact assessments presented as a very difficult task. The aim of this study was to derive a comprehensive set of tailpipe particle emission factors for different vehicle and road type combinations, covering the full size range of particles emitted, which are suitable for modelling urban fleet emissions. Materials and methods A large body of data available in the international literature on particle emission factors for motor vehicles derived from measurement studies was compiled and subjected to advanced statistical analysis, to determine the most suitable emission factors to use in modelling urban fleet emissions. Results This analysis resulted in the development of five statistical models which explained 86%, 93%, 87%, 65% and 47% of the variation in published emission factors for particle number, particle volume, PM1, PM2.5 and PM10 respectively. A sixth model for total particle mass was proposed but no significant explanatory variables were identified in the analysis. From the outputs of these statistical models, the most suitable particle emission factors were selected. This selection was based on examination of the statistical robustness of the statistical model outputs, including consideration of conservative average particle emission factors with the lowest standard errors, narrowest 95% confidence intervals and largest sample sizes, and the explanatory model variables, which were Vehicle Type (all particle metrics), Instrumentation (particle number and PM2.5), Road Type (PM10) and Size Range Measured and Speed Limit on the Road (particle volume). Discussion A multiplicity of factors need to be considered in determining emission factors that are suitable for modelling motor vehicle emissions, and this study derived a set of average emission factors suitable for quantifying motor vehicle tailpipe particle emissions in developed countries. Conclusions The comprehensive set of tailpipe particle emission factors presented in this study for different vehicle and road type combinations enable the full size range of particles generated by fleets to be quantified, including ultrafine particles (measured in terms of particle number). These emission factors have particular application for regions which may have a lack of funding to undertake measurements, or insufficient measurement data upon which to derive emission factors for their region. Recommendations and perspectives In urban areas motor vehicles continue to be a major source of particulate matter pollution and of ultrafine particles. It is critical that in order to manage this major pollution source methods are available to quantify the full size range of particles emitted for traffic modelling and health impact assessments.
Resumo:
Acoustic emission (AE) technique is one of the popular diagnostic techniques used for structural health monitoring of mechanical, aerospace and civil structures. But several challenges still exist in successful application of AE technique. This paper explores various tools for analysis of recorded AE data to address two primary challenges: discriminating spurious signals from genuine signals and devising ways to quantify damage levels.
Resumo:
Managing the sustainability of urban infrastructure requires regular health monitoring of key infrastructure such as bridges. The process of structural health monitoring involves monitoring a structure over a period of time using appropriate sensors, extracting damage sensitive features from the measurements made by the sensors, and analysing these features to determine the current state of the structure. Various techniques are available for structural health monitoring of structures, and acoustic emission is one technique that is finding an increasing use in the monitoring of civil infrastructures such as bridges. Acoustic emission technique is based on the recording of stress waves generated by rapid release of energy inside a material, followed by analysis of recorded signals to locate and identify the source of emission and assess its severity. This chapter first provides a brief background of the acoustic emission technique and the process of source localization. Results from laboratory experiments conducted to explore several aspects of the source localization process are also presented. The findings from the study can be expected to enhance knowledge of the acoustic emission process, and to aid the development of effective bridge structure diagnostics systems.
Resumo:
This paper presents techniques which can be viewed as pre-processing step towards diagnosis of faults in a small size multi-cylinder diesel engine. Preliminary analysis of the acoustic emission (AE) signals is outlined, including time-frequency analysis, selection of optimum frequency band. Some results of applying mean field independent component analysis (MFICA) to separate the AE root mean square (RMS) signals are also outlined. The results on separation of RMS signals show this technique has the potential of increasing the probability to successfully identify the AE events associated with the various mechanical events.
Resumo:
Increases in atmospheric concentrations of the greenhouse gases (GHGs) carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) due to human activities have been linked to climate change. GHG emissions from land use change and agriculture have been identified as significant contributors to both Australia’s and the global GHG budget. This is expected to increase over the coming decades as rates of agriculture intensification and land use change accelerate to support population growth and food production. Limited data exists on CO2, CH4 and N2O trace gas fluxes from subtropical or tropical soils and land uses. To develop effective mitigation strategies a full global warming potential (GWP) accounting methodology is required that includes emissions of the three primary greenhouse gases. Mitigation strategies that focus on one gas only can inadvertently increase emissions of another. For this reason, detailed inventories of GHGs from soils and vegetation under individual land uses are urgently required for subtropical Australia. This study aimed to quantify GHG emissions over two consecutive years from three major land uses; a well-established, unfertilized subtropical grass-legume pasture, a 30 year (lychee) orchard and a remnant subtropical Gallery rainforest, all located near Mooloolah, Queensland. GHG fluxes were measured using a combination of high resolution automated sampling, coarser spatial manual sampling and laboratory incubations. Comparison between the land uses revealed that land use change can have a substantial impact on the GWP on a landscape long after the deforestation event. The conversion of rainforest to agricultural land resulted in as much as a 17 fold increase in GWP, from 251 kg CO2 eq. ha-1 yr-1 in the rainforest to 889 kg CO2 eq. ha-1 yr-1 in the pasture to 2538 kg CO2 eq. ha-1 yr-1 in the lychee plantation. This increase resulted from altered N cycling and a reduction in the aerobic capacity of the soil in the pasture and lychee systems, enhancing denitrification and nitrification events, and reducing atmospheric CH4 uptake in the soil. High infiltration, drainage and subsequent soil aeration under the rainforest limited N2O loss, as well as promoting CH4 uptake of 11.2 g CH4-C ha-1 day-1. This was among the highest reported for rainforest systems, indicating that aerated subtropical rainforests can act as substantial sink of CH4. Interannual climatic variation resulted in significantly higher N2O emission from the pasture during 2008 (5.7 g N2O-N ha day) compared to 2007 (3.9 g N2O-N ha day), despite receiving nearly 500 mm less rainfall. Nitrous oxide emissions from the pasture were highest during the summer months and were highly episodic, related more to the magnitude and distribution of rain events rather than soil moisture alone. Mean N2O emissions from the lychee plantation increased from an average of 4.0 g N2O-N ha-1 day-1, to 19.8 g N2O-N ha-1 day-1 following a split application of N fertilizer (560 kg N ha-1, equivalent to 1 kg N tree-1). The timing of the split application was found to be critical to N2O emissions, with over twice as much lost following an application in spring (emission factor (EF): 1.79%) compared to autumn (EF: 0.91%). This was attributed to the hot and moist climatic conditions and a reduction in plant N uptake during the spring creating conditions conducive to N2O loss. These findings demonstrate that land use change in subtropical Australia can be a significant source of GHGs. Moreover, the study shows that modifying the timing of fertilizer application can be an efficient way of reducing GHG emissions from subtropical horticulture.
Resumo:
Acoustic emission (AE) is the phenomenon where high frequency stress waves are generated by rapid release of energy within a material by sources such as crack initiation or growth. AE technique involves recording these stress waves by means of sensors placed on the surface and subsequent analysis of the recorded signals to gather information such as the nature and location of the source. It is one of the several diagnostic techniques currently used for structural health monitoring (SHM) of civil infrastructure such as bridges. Some of its advantages include ability to provide continuous in-situ monitoring and high sensitivity to crack activity. But several challenges still exist. Due to high sampling rate required for data capture, large amount of data is generated during AE testing. This is further complicated by the presence of a number of spurious sources that can produce AE signals which can then mask desired signals. Hence, an effective data analysis strategy is needed to achieve source discrimination. This also becomes important for long term monitoring applications in order to avoid massive date overload. Analysis of frequency contents of recorded AE signals together with the use of pattern recognition algorithms are some of the advanced and promising data analysis approaches for source discrimination. This paper explores the use of various signal processing tools for analysis of experimental data, with an overall aim of finding an improved method for source identification and discrimination, with particular focus on monitoring of steel bridges.